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Introduction

- Optics that focus x-rays to a spot size ≤ 10 micron

DiffractiveReflective Refractive
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When to use microfocusing optics:

For x-ray microscopy

– Most samples are heterogeneous, from micron down to nm scale

Increased flux density

– Gain ~ 106 is possible, hence higher sensitivity (signal/background)

Enable smaller samples or new sample environment
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X-ray Microscopy

Holography* 

Direct imaging (radiography)*
with magnification in visible light

Coherent diffraction imaging*

ρ(x,y)

Transmission microscope (TXM)

Scanning microscope (SXM)   

depends only on total flux, but not brilliance / coherence

depends only on coherent flux, directly benefits 
from reduced emittance

Lecture by I. McNulty on Oct. 3

* May not require microfocusing
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Cross-sectional TEM of Strained-Si NMOSFET

Quality of epitaxial layers maintained during CMOS process steps
Gate oxide with smooth interface formed by thermal oxidation

=> today’s manufacturer’s are already able to produce nm scale structures. To probe such
small structures meaningfully requires x-ray beam of the same order of magnitude.
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Ken Rim
-IBM

Slide courtesy Cev Noyan, with modification
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Microfocusing increases flux density

Focusing increases the signal/background ratio

Detection Limit with 1 sec. Dwell Time
0.2 x 0.2 µm2 spot, E=10 keV
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For current probes with submicron 

spot, attogram (10-18 gm) of materials 

can be detected in fluorescence mode

With a 5-nm probe, sensitivity of  

zeptogram (10-21 gm) or a few atoms 

is possible 
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Microbeam for protein crystallography
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New High-Pressure Frontiers with 
higher spatial resolution

Diamond Anvil Cell uses focused microbeams at 
high energy (>30 keV) to probe highest 
pressure/temperature region

High pressure: with better focused beams, can 
use small anvil tips, and greatly extend the 
accessible pressure from 350GPa ⇒ TPa

– New areas for discovery of materials and 
phenomena

High temperature: with smaller probes, can limit 
the heating area to diffraction limit of laser, thus 
extend max temperature from 6,000K to 
12,400K 

Open up new opportunities for studies of 
materials under core conditions (P,T)

Improve ability to understand structures of Giant 
Planets

Slide adapted from Steve Sutton (UoC) & David Mao (Carnegie Institute of Washington)
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General considerations

Magnification

Numerical Aperture

Resolution

Depth of Focus

Chromatic aberration
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Geometrical Optics

Thin-Lens Equation: 

Magnification: 

Microfocusing optics produce a demagnified image of the source (M < 1).
Imaging optics produce a magnified image of the sample (M > 1).

Some optics can work as both, others only for microfocusing (M < 1).
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Demagnification

For synchrotron micro/nano-probes, M ~ 10-2 – 10-4

If decreasing focal length becomes difficult, long beamlines (p) will help



13Cheiron Summer School 2008

Numerical Aperture

N.A. = n sin θmax is a measure of the light gathering power 

Intimately related to the performance of the optics (focused flux, diffraction-

limited resolution, depth of focus, etc.)
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Liouville’s Theorem

Phase space density is conserved in a perfect optical system (η = 100%)

Microfocusing optics inevitably will increase the angular spread

Brightness is the radiated power per unit area per solid angle at the source

At the focus, available flux ~ B * δ2 * NA2 * η where δ is the spot size and η is 

the efficiency of the optics, hence the importance of high brightness source

and large N.A. optics

ssA
PB

ΔΩ⋅Δ
=



15Cheiron Summer School 2008

Diffraction from a Circular Aperture
Airy pattern
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D. Attwood (LBNL)
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Rayleigh’s Criterion for Resolving Two Point Images

<= Diffraction limited resolution

D. Attwood (LBNL)
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Resolution improves with smaller λ

Malaria-infected red blood cell

XX--ray microscopyray microscopy Visible light microscopyVisible light microscopy

C. Magowan, W. Meyer-Ilse, and J. Brown (LBNL)
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Depth of Focus

DOF determines the sample thickness in 2D imaging and the maximum 
sample volume in 3D tomography. DOF increases with energy:

λ
δ

±=
λ

±=
2

2
34.1

)NA(2
DOF

W. Yun (Xradia)
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Chromatic aberration

Does focal length depends on λ?  
– Reflective optics: achromatic, can focus white beam, higher flux
– Diffractive optics: f ~ E
– Refractive optics: f ~ E2

f(E)
f(E+ΔE)



20Cheiron Summer School 2008

X-ray Microfocusing Optics

Reflective optics

Diffractive optics

Refractive optics
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Reflective Optics

Schwarzschild objective

Wolter microscope

Capillary optics

Kirkpatrick-Baez mirrors
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Reflectivity of single and multi-layer

Single layer
Total external reflection when
θ<θc (~ a few mrad):

Finite β/δ rounds the reflectivity 
curve

β+δ−=
λ∝δ=θ

i1n
Z2c

Multilayers

Large θ means shorter mirror or 
larger acceptance

Spectral bandwidth ~ a few %.

Cannot focus white beam



23Cheiron Summer School 2008

Schwarzschild Objective

Near normal incidence with multilayer coating (126 eV)
N.A. > 0.1
Imaging microscope

F. Cerrina (UW-Madison), J. Underwood (LBNL)
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Wolter Type I Microscope

Use 2 coaxial conical mirrors with hyperbolic and elliptical profile
Imaging microscope
Difficult to polish for the right figures and roughness

J.A. Jackson (LLNL)
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Glass capillary optics

One-bounce capillary

Large working distance (cm)

Compact: may fit into space too 
small for K-B

Nearly 100% transmission

N.A. ~ 2-4 mrad (≤ 2θc)

Difficult to make submicron spot

Multi-bounce condensing capillary

Easy to make with small opening 
(submicron)

Short working distance (100 μm)

Low transmission

capillary

holder

D. Bilderback (Cornell)
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Kirkpatrick-Baez mirrors pair

Very popular for focusing in the 1-10 μm regime: relatively easy to make, 
longer mirrors can be used for higher flux

For submicron focusing, mirrors with precise elliptical profile are required 
(figure error < 1 μrad)

A horizontal and a vertical mirror arranged 
to have a common focus

Achromatic: can focus pink beam (but not 
with multilayer coating)

Different focal lengths and demagnifications: 
can be used to produce ~ round focal spot
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Elliptical x-ray mirrors
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A. Macrander (APS)
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Bending
– ALS
– ESRF

Differential deposition/profile 
coating
– APS (C. Liu)

Differential polishing
– Osaka/Spring8
– APS/Tinsley

Methods used for making x-ray quality elliptical mirrors 

7 µm
max

7 µm
max

G. Ice (ORNL)
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K-B mirrors are very popular for micron scale focusing 

At the APS, K-B microprobes with 100 and 200-mm long bent mirrors are 
common:
– MR-CAT 10-ID

(J. Kropf, K. Kemner)
– GSECARS 13-ID-C

(S. Sutton, M. Rivers)
– BioCAT 18-ID

(T. Irving, R. Barrea)
– PNC/XOR 20-ID

(S. Heald, D. Brewe)

Monochromatic flux ~ 
1011–1012 ph/sec

GSECARS microprobe
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KB mirror systems for nanofocusing

APS/ORNL collaboration KB optics 
– Poly/mono Beams 85 x 95 nm

ESRF 45 nm

Osaka/Spring-8 ~ 25 nm x30 nm

Simple KB system diffraction limit 
~17 nm

Osaka mirrors

APS/ORNL 34-ID

G. Ice (ORNL)
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Diffractive Optics

Fresnel zone plates (FZP)

Multilayer Laue Lens (MLL)
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Fresnel zone plates: basic formula
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D. Attwood (LBNL)
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Diffraction limited resolution

D. Attwood (LBNL)
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Depth of focus and spectral bandwidth

D. Attwood (LBNL)



35Cheiron Summer School 2008

Higher orders and negative orders

D. Attwood (LBNL)
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Efficiency: Phase vs Amplitude Zone Plates
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Efficiency of a phase ZP with π-phase shift ~ 40%
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Fabrication of FZP

E-beam 
Lithography

Pattern 
Transfer

Electro-
plating
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Recent Hard X-ray Zone Plates

Δr = 30 nm, 450 nm thick, AR = 15 (Academia Sinica)

Δr = 24 nm, 300 nm thick, AR = 12.5 (Xradia)

To achieve good efficiency, aspect ratio needs to be increased 
(e.g. needs 1.5 μm thick for optimal efficiency at 8 keV)

W. Yun (Xradia)
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Recent Images from TXM at 32-ID

Image of a Au test pattern at 8 keV

Y-T. Chen et al., Nanotech. 19, 395302 (2008).

Modulation Transfer Function (MTF)

Δr=30 nm

Δr=45 nm
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Other means to increase the aspect ratio

Align and bond two ZPs within DOF

Lateral alignment tolerance ~ Δr/3 
(10 nm for 30-nm ZP)
< 10 μm separation between the ZPs

Use the first ZP as self-aligning mask

100 nm demonstrated
Photoresist mechanical and stress 
issue

W. Yun (Xradia)
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Even with stacking, aspect ratio > 100 is 
probably difficult to achieve with 

lithographic zone plates!
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Multilayer Laue Lens: novel approach for high aspect ratio

Varied d-spacing multilayers

Si substrate

Dicing ~ 1mm Polishing ~ 5-25 μm

Sectioned graded-period multilayer

1D MLL 2D MLL
Aspect ratio > 1000 (Δr = 5-10 nm, 

10 μm thick) demonstrated

Engineering challenge of aligning 
and assembling 2 or 4 MLLs to 
produce a single optics

A. Macrander (APS)
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SEM image of an MLL

WSi2/Si

Δr~10 nmΔr~58 nm

12.4 μm

A. Macrander (APS)
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Best measured line focus of MLL

H.C. Kang et al., APL 92, 221114 (2008)

Flou.  17.6 nm
Scatt. 15.6 nm
Cal.    15.0 nm

Efficiency: 31%
Energy: 19.5 keV

5 nm wide 
Pt layer

Pt Lα,β,γ

MLL

Fluorescence 
detector

X-rays
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Thin vs Thick Zone Plate

When aspect ratio increases, effects from dynamical diffraction vs kinematic 
scattering need to be considered

Zones should be inclined locally to satisfy Bragg condition

Thin to thick transition: w = (2Δr)2/λ ~ DOF
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(a) Flat M LL                  (b) Ideal M LL           (c) Tilted M LL

flat ideal
(wedged)

tilted

For flat structure, local efficiency decreases at large r

For tilted or ideal wedged structures, efficiency actually increases beyond 
the thin phase ZP limit of 40%

This effect is enhanced for high resolution (small Δr)

H.C. Kang et al., PRL 96, 127401 (2006)
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H.C. Kang et al., PRL 96, 127401 (2006)

(a) Flat M LL                  (b) Ideal M LL           (c) Tilted M LL

flat ideal
(wedged)

tilted

Despite lower overall efficiency, both flat and tilted structure can 
achieve ~ 5 nm resolution
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Refractive Optics

Compound refractive lens (CRL)
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Refraction & Absorption

Refraction of hard x-rays in matter is weak

• strong curvature of lens surfaces
• stacking of many lenses behind each other

Absorption of x-rays in lenses reduces the efficiency

• lenses must be made of low Z material (Be, B, C, Al, ...)
• lenses should be made as thin as possible

Refractive index n smaller than 1:

• focusing lens must be concave

C. Schroer (Tech Univ Dresden)
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Parabolic Refractive X-Ray Lenses

parabolic profile:parabolic profile:

variable number of lenses: variable number of lenses: NN = 10 ... 300= 10 ... 300

single lenssingle lens stack of lenses:stack of lenses:
compound refractive lens (CRL)compound refractive lens (CRL)

No spherical aberration
imaging optic

C. Schroer (Tech Univ Dresden)



Aachen University
APL  74, 3924 (1999)

Parabolic Refractive X-Ray Lenses

C. Schroer (Tech Univ Dresden)



Lens used as
objective in 
x-ray microscope

image distance

numerical aperture

Imaging with Magnification

C. Schroer (Tech Univ Dresden)



Ni-mesh (2000mesh)

25µm

parameters: parameters: 
•• EE = 12keV= 12keV
•• NN = 91 (Be)= 91 (Be)
•• ff = 495mm, = 495mm, 
•• mm = 10x= 10x

Parabolic profile of lenses is crucial to good image quality

Undistorted (Magnified) Image

simulation:
spherical lens

C. Schroer (Tech Univ Dresden)



Full-Field Imaging: Resolution

line profile
expected resolution: 84nm

deconvolve
film granularity

resolution of Optic: 105nm ± 30nm
C. Schroer (Tech Univ Dresden)



55Cheiron Summer School 2008

1-Dimensional Nanofocusing Lenses (NFLs)

lens made of Si by e-beam litho-
graphy and deep reactive ion etching!

strong lens
curvature:

N = 35 - 140

APL 82, 1485 (2003)

nanolens

single
lens

optical axis

R = 1µm - 5µm

100 µm

C. Schroer (Tech Univ Dresden)



Fabrication of Si Nanofocusing LensesFabrication of Si Nanofocusing Lenses

500 μm

Over 1200 lens arrays
Over 100000 structures

high accuracy, reproducibility 100 μm

C. Schroer (Tech Univ Dresden)
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Crossed Nanofocusing Lenses

Setup at the European 
Synchrotron Radiation 
Facility (ESRF)

10mm

aperture defining pinhole

sample

vertically focusing 
lens

horizontally focusing 
lens

C. Schroer (Tech Univ Dresden)
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Focusing with NFLs

Si lens: E = 21keV, L1 = 47m

vertical focus: 55nm

demagnification: 
~ 2400 x 4400

horizontal focus: 47nm

source: 
ID13 low-β invac. undulator

source size: 150 x 60µm2

flux: 1.7 ·108ph/s 

f = 10.7mm

f = 19.4mm

APL 87, 124103 (2005)

C. Schroer (Tech Univ Dresden)



Diffraction limit:Diffraction limit: NN = 100= 100
ll ≥≥ 0.0840.084
RR = 0.5 = 0.5 -- 5050µµmm

Best materials: high density and low Best materials: high density and low ZZ

bounded by 

Effective Aperture and Diffraction LimitEffective Aperture and Diffraction Limit

C. Schroer (Tech Univ Dresden)
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Summary: best resolution achieved currently 

K-B mirrors :  25 x 30 nm
H. Mimura et al., APL 90, 051903 (2007);
S. Matsuyama et al., RSI 77, 103102(2006).

FZP: 29 nm
Y-T. Chen et al., Nanotech. 19, 395302 (2008).

MLL: 17 nm line focus
H.C. Kang et al., APL 92, 221114 (2008).

CRL: 47 x 55 nm
C. G. Schroer et al, APL 87, 124103 (2005).

Waveguides: 25 X 47 nm
A. Jarre et al., PRL 94, 074801 (2005).
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Summary: other considerations

K-B mirror FZP/MLL Refractive Lens

Resolution 25 x 30 nm 29/17 nm 47 x 55 nm

Flux density gain > 500,000 > 500,000 10,000

Chromatic 
aberration Achromatic 1/λ 1/λ2

Coherence 
preservation Fair Good Acceptable

Easy to use Require effort Good Fair



62Cheiron Summer School 2008

Future Prospects
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Resolution had improved dramatically 

C. Jacobsen (Stony Brook)

Where is the limit?  1 nm?  1 Å?
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δ(nm) ~ 100λC(Å)/Δθ(mrad)

Δθ ~ 0.85θc standard KB mirror

θc ~ proportional to λ
δ ~ 17 nm- Pt 50% reflectivity
δ ~ 14 nm- Pt 10% reflectivity

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

0.0016

-4 10-8 -2 10-8 0 2 10-8 4 10-8

Diffraction limit

17 nm

K-B Nanofocusing MirrorsK-B Nanofocusing Mirrors

Incident X-RaysFocus

Reflective Optics: Focal size ultimately limited by θc

G. Ice (ORNL)
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Reflective optics: radical approaches needed for sub 10 nm

Multilayers → 4-5 nm
– ESRF/Osaka
– Limited bandpass - ideal for undulator harmonic

Coaxial/multiple reflections → 3-4 nm

Combination of both →→ 1 nm?

G. Ice (ORNL)
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MLL: Presently Feasible Outermost Zone Width

H.C. Kang , H. Yan, et al., submitted

(0.75 nm layer width has been demonstrated:  Y. Chu et al., RSI 73, 1485 (2002) )

Calculated for:
Wedged zones
Outermost zone width: 0.75 nm;
Energy: 19.5 keV
Efficiency: 50%
Radius: 40 microns

Lateral gradient mask on 
sputtering target: wedge MLL
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MLL: when Δr ~ single atomic layer

Each zone is tilted progressively to satisfy the local Bragg condition, 
resulting in a wedged shape.
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H. Yan et al., PRB 76, 115438 (2007).
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Ultimately parabolically curved interfaces are needed

H. Yan et al., PRB 76, 115438 (2007).



adiabatically focusing lens (AFL)

PRL 94, 054802 (2005)

Current limitation: 
geometry of lens limits 
refractive power per unit 
length for given aperture:

Solution:Solution:

adjust adjust RR00 to fit the to fit the 
converging beam converging beam 
as it is focusedas it is focused

Refractive Lens: Adiabatically Focusing Lens (AFL)

C. Schroer (Tech Univ Dresden)



Diamond lens:
low atomic number Z and high density ρ

N = 1166 individual lenses
entrance aperture: 18.9µm
exit aperture: 100nm
f = 2.3mm

diffraction limit: 4.7nm

compare to NFL:
same aperture

diffraction limit: 14.2nm

contracting wave field inside lens

Example AFL

C. Schroer (Tech Univ Dresden)



AFLs Made of Silicon

entrance aperture: 2R0i = 20µm
exit aperture: 2R0f = 1µm
energy: 10 - 20keV in 500eV steps f = 2.7mm

dt = 12.6nm

as horizontal lens in x-ray 
nanoprobe (e. g. ID13 ESRF):

L1 = 47m, source size: 
150µm

horizontal focus: 15.3nm 
(17400 x reduction)

properties: 

C. Schroer (Tech Univ Dresden)
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(Lensless) Coherent Diffraction Imaging 

Coherent diffraction imaging is 
much like crystallography but 
applied to noncrystalline materials

Lateral resolution can in principle 
approach λ, not limited by N.A. of 
available optics.  Long depth of 
focus.

Requires a fully coherent x-ray 
beam

Analogous to crystallographyAnalogous to crystallography Miao et al. (1999)Miao et al. (1999)
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Conclusions

Microfocusing optics is an vibrant field with many parallel developments:
– Reflective optics
– Diffractive optics
– Refractive optics

Resolution had improved dramatically over the last two decades. 30-50 nm 
are currently available. 

Future spot size of a few nm is physically possible, but requires great 
engineering effort.  There may be sufficient sensitivity and resolution to 
detect single atoms?

However, microprobes of all length scale are required for most scientific 
studies.  It is likely that 10 nm – 10 μm will remain the primary workhorse.
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