

Overview of Synchrotron Radiation

Cheiron School 2008, SPring-8

Keng Liang September 29, 2008

Light Source: Sun

The Sun appears to have been active for 4.6 billion years and has enough fuel to go on for another five billion years or so.

Light: wave or particle Isaac Newton, 1642-1727

+ The prism: Energy Analyzer (energy resolution)

+ The eye: Detector (sensitivity)

- + Wave: described by wave length, phase, amplitude
- + Matter: optical index of reflection

J.J.Thomson was awarded the 1906 Nobel Prize in Physics for the discovery of the electron and his work on the conduction of electricity in gases.

Wilhelm Röntgen produced and detected electromagnetic radiation in a wavelength range known as x-rays today; this achievement earned him the first Nobel Prize in Physics in 1901.

High Energy Accelerators

Figure 1: Livingston chart.

Synchrotron Radiation

Year 1947: First Synchrotron Radiation observed in weak focusing synchrotron betatrons

Cheiron2008_KSLiang-9

SR Facilities in Asia Oceania Region

Basic Parameters of Taiwan Light Source

- Interval between bunches: 2ns
- Bunch length (1σ@1.6MV): 6.5 mm
- Bunch duration (1σ): 21 ps
- SC Cavity length: 24 cm
- Flight time through SC cavity: 0.8

• Bunch current (180/200 filling to I_{avg} =300 mA): 1.67 mA/bunch or 4.17*10⁹ electrons/bunch

• Critical energy of SR Ec(keV) = 0.665 E² (GeV) B(T)

Insertion Devices

Wiggler: radiation adds incoherently (I~2N, N: number of magnet periods) Undulator: radiation interferences coherently

Superconducting RF Cavity

e

Goals :

- To increase the maximum electron beam current of the storage ring from 240 mA to 500 mA
- To eliminate beam instabilities caused by the strong higherorder modes (HOMs) of the existing RF cavities

Low-emittance Medium Energy Rings

Date	Location	Name	E [GeV]	Emit. [nm- rad]	C [m]	Straights m*section	Cell	Status
2001	Switzerland, Villigen	SLS	2.4	4.8 (4.1)	288	11.76m*3+7m*3+4m*6	12 TBA	Operation
2006	France, Orsay	SOLEIL	2.75	(3.7)	351	12m*4+7m*12+3.6m*8	16 DBA	Operation
2006	UK, Oxfordshire	DIAMOND	3.0	6.5 (2.7)	562	11.34m*6+8.34m*18	24 DBA	Operation
2008	China, Shanghai	SSRF	3.5	7.8 (3.0)	432	12m*4+6.7m*16	20 DBA	Commiss.
2009	Spain, Barcelona	ALBA	3.0	(4.2)	268	8m*4+4.2m*12+2.6m*8	16 DBA	Construct.
2013	Taiwan, Hsinchu	TPS	3.0	1.7(1.46)	518	12m*6+7m*18	24 DBA	Approved
2013	USA, Brookhaven	NSLS-II	3.0	1.9 (0.5)	780	8m*15+5m*15	30 DBA	Approved

7/22/2006

Emittance of Synchrotrons

Storage Ring

TPS DBA Lattice Cell and Engineering Layout

Optical Functions and Dynamic Aperture of Three Modes

 Critical energy of SR spectrum Ec(keV) = 0.665 E² (GeV) B(T) TLS: 1.5 GeV, operation since Oct. 1993; the first 3rd generation synchrotron facility in Asia TPS: 3 GeV, operation planned for 2013

Fully coherent radiation.....

J.M. Byrd

Courtesy of H. Winick

Electron Binding Energies

Electron	binding	energies,	in ele	ctron	volts,	for	the	elements	in	their	natural	forms	

Element	K 1s	L ₁ 2s	$L_{11} 2p_{1/2}$	$L_{\rm III}2p_{3/2}$	M ₁ 3s	$M_{\rm II} 3p_{1/2}$	$M_{\rm III}3p_{3/2}$	$M_{\rm IV} 3d_{3/2}$	$M_{\rm V} 3d_{5/2}$	$N_1 4s$	$N_{\rm II}4p_{1/2}$	$N_{\rm III} 4p_{3/2}$	2
1 H 2 He 3 Li 4 Be 5 B	16* 24.6* 54.7* 111.5* 188*	7									2	*	Antibonding orbital
6 C 7 N	284.2* 409.9*	37.3*								•		Atomic orb	itals
8 O 9 F	543.1* 696.7*	41.6*											Bonding orbital
10 Ne 11 Na 12 Mg	870.2* 1070.8 [†] 1303.0 [†]	48.5* 63.5 [†] 88.6*	21.7* 30.4 [†] 49.6 [†]	21.6* 30.5 [†] 49.2 [†]	1	7						£	ν_{s}
13 AI	1558.98*	117.8*	72.9*	72.5*									the Bonding energy level
14 Si	1839	149.7*b	99.8* 136*	99.2* 135*								-	
16 S	2472	2309*b	163.6*	162.5*									P
17 Cl	2833	270*	202*	200*		15.0*	16.74						
18 Ar 19 K	3205.9*	378.6*	250.6*	248.4*	34.8*	18.3*	18.3*					76	E X
20 Ca	4038.5*	438.4*	349.7*	346.2*	44.3'	25.4*	25.4*					eue	
21 Sc	4492	498.0*	403.6*	398.7*	51.1*	28.3*	28.3*					tro	
22 Ti	4966	560.9	461.2	453.8	58.7	32.6	32.6					Elec	Number of available
23 V	5465	626.7	519.8'	512.1	06.3	37.2	37.2						quantum states
24 Cr 25 Mn	5989 6530	769.1	585.8 649.9 [†]	574.1 638 7 [†]	82.31	42.2	42.2						
26 Fe	7112	844.6	719.9	706.8*	91.3*	52.7*	52.7						Valence band
27 Co	7709	925.1*	793.3*	778.1*	101.0*	58.9*	58.9 [†]						
28 Ni	8333	1008.6*	870.0 [†]	852.7 [†]	110.8*	68.0 ⁺	66.2 [†]						10
29 Cu	8979	1096.7*	952.3*	932.5 [†]	122.5*	77.3*	75.1*		575 M2 7475 A	_			Interatornic distance
30 Zn	9659	1196.2*	1044.9*	1021.8*	139.8*	91.4*	88.6*	10.2*	10.1*				
31 Ga	10367	1299.0*b	1143.2*	1116.4*	159.5*	103.5*	103.5 [†]	18.7*	18.7*				
32 Ge	11103	1414.6*b	1248.1*b	1217.0*Ъ	180.1*	124.9*	120.8*	29.0*	29.0*				
33 As	11867	1527.0*b	1359.1*b	1323.6*b	204.7*	146.2*	141.2*	41.7*	41.7*				
34 Se	12658	1652.0*b	1474.3*b	1433.9*b	229.6*	166.5*	160.7*	55.5*	54.6*				
35 Br	13474	1782*	1596*	1550*	257*	189*	182*	70*	69*	27.58	14.18	14.1*	
36 Kr	14326	1921	1/30.9*	16/8.4*	292.8*	222.2*	214.4	95.0*	95.8*	27.5*	16.3*	15 3*	
3/ KD	15200	2005	2007	1940	358 7	280.31	270.01	136.01	134.21	38.91	20.3	20.3	
30 V	17038	2373	2156	2080	392 0*h	310.6*	298.8*	157.7	155.8*	43.8*	24.4*	23.1*	
40 Zr	17998	2532	2307	2223	430.3 ⁺	343.5	329.8*	181.1	178.8*	50.6*	28.5*	27.7*	V U V
41 Nb	18986	2698	2465	2371	466.6*	376.1*	360.6*	205.0 ⁺	202.3*	56.4 [†]	32.6*	30.8 [†]	
42 Mo	20000	2866	2625	2520	506.3 [†]	410.6 [†]	394.0 [†]	231.1+	227.9 [†]	63.2*	37.6*	35.5*	
43 T _c	21044	3043	2793	2677	544*	447.6*	417.7*	257.6*	253.9*	69.5*	42.3*	39.9*	Soft X-ray
44 Ru	22117	3224	2967	2838	586.2 [†]	483.3	461.5	284.2	280.0 [†]	75.0*	46.5	43.2	Solt IX Iuy
45 Rh	23220	3412	3146	3004	628.1	521.3	496.5	311.9	307.2	81.4*b	50.5	47.3'	
46 Pd	24350	3604	3330	3173	671.6 ¹	559.9'	532.3	340.5'	335.2'	87.1*b	55.7'a	50.9 a	Hard X-ray
4/ Ag	25514	3006	3524	3351	/19.0	003.8	575.0	374.0	300.V	97.0	05.7	30.5	

Unique Characteristics of SR

+ High brilliance/flux (coherence & emittance) + Energy tunability (element sepecificity) + Polarization (spin probe) + Time structure

Auger Electron emission

EXAFS

$$\chi(k) = \sum_{j} \frac{N_j}{kR_j^2} S_j(k) F_j(k) \exp(-2\sigma_j^2 k^2) \exp\left[-2R_j / \lambda(k)\right] \sin\left[2kR_j + \delta_{ij}(k)\right]$$

Probe of Atomic Arrangements in disordered matters – beyond crystallography

EXTENDED X-RAY ABSORPTION FINE STRUCTURE EXAFS

Total phase shift experienced by the photoelectron is given by $\delta_{ij}(k) = 2 \delta_i^c(k) + \theta(k)$

Fig. 2.2. Qualitative rationalization of the absence and presence, respectively, of EXAFS in a monatomic gas such as Kr (a and c) and a diatomic gas such as Br_2 (b and d).

典型的 X 光吸收光譜術實驗配置圖 (其中虛線表示實驗站的輻射屏蔽屋)

Supported Metal Catalyst

Fuel Cell Research

利用X光吸收光譜分析可獲知材料中特定元素的電子性質與局部幾何結構,並經由充放 電過程之臨場量測,直接與電化學行為建立 關聯性,成為改進電極材料特性之依據。

Atomic Scattering Factors of X-rays

Atomic scattering factor $f(q,E)=f_0(q) + f'(E) + if''(E)$

Intensity $I \approx \left| F_{HKL} \right|^2 = \left| \sum_{i} f_i \cdot e^{i \vec{q}_{HKL} \cdot \vec{r}_i} \right|^2$

X-ray Anomalous Scattering Factor of PT

Element-specific diffraction pattern or X-ray partial structure factor

Anomalous X-ray Scattering

Atomic scattering factor $f(q,E) = f_0(q) + f'(E) + if''(E) = f_1 + if_2$

Uncapped In_{0.5}Ga_{0.5}As Quantum Dots

 $a_{InAs} = 6.0583 \text{\AA}$ $a_{GaAs} = 5.65325 \text{\AA}$

misatch = 7.2 %

 $n \sim 5 \ x 10^{10} \ cm^{-2}$

J. Cryst. Growth, 175/176, 777 (1997).

A New Era of Biological Science

The Atoms: God's Creation

Touristy of Cold Spring Hadron's Tables, had on the Michael Ber

Double Helix DNA

Source : James D. Watson , Francis Crick . *Molecular Structure of nucleic acids*, **Nature**, 171(1953):737-138

利用X光繞射發現DNA雙螺旋結構

DNA Structure

Double helix DNA of 12 base pairs

The Genome Map of living matters

Charles Darwin

DECIPHERING GOD'S INSTRUCTION BOOK

ing on randomly occurring variations. At the level of the genome as a whole, a computer can construct a tree of life based solely upon the similarities of the DNA sequences of multiple organisms. The result is shown in Figure 5.1. Bear in mind that this analysis does not utilize any information from the fossil record, or from anatomic observations of current life forms. Yet its similarity to conclusions drawn from studies of comparative anatomy, both of existent organisms and of fossilized remains, is striking. Second, within the genome, Darwin's theory predicts that mutations that do not affect function (namely,

129

128

Francis Collins

From "The Language of God" by F. Collins (Free Press, 2006)

BL13B1 PX Experimental Station - for drug design

Protein Crystal

X-ray Diffraction Pattern

Protein Structure

Structure of SARS 3CLpro with substrate

Valence States of Condensed Matter

圖— Ni(N₄C₄H₂)₂分子結構圖 ∘

 $\Delta
ho$ M-A, static

 $\Delta \rho DFT$

圖六總電子密度, 鍵結路徑及原子範疇。

Courtesy of Y. Wang

Photoelectron Spectroscopy for Valence Structure

Photoelectron Spectroscopy for Valence Structure

Fig. 10-15 Various aspects of the Fermi surface of Cu. (a) The Brillouin zone of an fcc lattice with some special points labeled. (b) A (110) section of the Brillouin zone. See the text for the meaning of the internal curves. (c) The proposed Fermi surface of Cu. (d) The extended zone picture of a (110) section of the Fermi surface showing the dog bone orbits.

Fig.7.17. Occupied part of the band structure of Cu[7.39] with data points from various sources and a theoretical result [7.53]. Also shown (squares) are the two A_2 points and the four B₁ points from Fig.7.16

$$d\sigma / d\Omega \propto \Sigma \left| \left\langle \Psi_f \left| \mathbf{A} \bullet \mathbf{P} \right| \Psi_i \right\rangle \right|^2$$

 $\delta \left(E_f - E_i - hv \right)$

Selection rules:

- $\Delta l = \pm 1$
- $\Delta m_l = 0$ (linearly polarized)
- $\Delta m_l = +1$ (L. circularly polarized)
- $\Delta m_l = -1$ (R. circularly polarized)

 $k_{\prime\prime} = \sqrt{2mKE/h^2}\sin\theta$

Advantages of Soft-x-ray Scattering Spectroscopy

• Sensitive to spatially order of charge, spin, and orbitals in nanometer scales

Resonant X-ray scattering

$$\Delta f \sim \sum_{i} \frac{\left\langle 0 \left| \vec{\varepsilon} \cdot \vec{r} e^{i\vec{k} \cdot \vec{r}} \right| i \right\rangle \left\langle i \left| \vec{\varepsilon} \cdot \vec{r} e^{i\vec{k} \cdot \vec{r}} \right| 0 \right\rangle}{\hbar \omega - (E_{i} - E_{0} - i\Gamma)}$$

charge ordering: spatial localization of the charge carriers on certain sites

> 2+ • • • • 3+ • • • •

orbital ordering: periodic arrangement of specific electron orbitals

spin ordering: long range ordering of local magnetic moments

Cheiron2008_KSLiang-52

ØØØ

Nano Imaging by X-rays

Amorphous MoS3

The scaled absorption cross-section as a function of photon energy for a selection of elements. The absorption cross-section per atom, σ_a , has been scaled by dividing it by the atomic number Z to the fourth power, and multiplying it by the photon energy ε to the third power.

Zone plate consists of concentric rings (zones) with zone width decreasing with radius

Nano-TXM at NSRRC

Phase Ring

Zone Plate

Sample Stage

Condenser Tube

Nanotomography comes of age

APL 88, 241115 (2006)

└ Light 」

 $E(z) = E_0 e^{-i2\pi(-\delta - i\beta) z/\lambda} = E_0 e^{i2\pi\delta z/\lambda} - 2\pi\beta z/\lambda$

 $|(z) \sim |E(z)|^2 \sim l_0 e^{4\pi\beta z/\lambda}$

Phase Problem

Wilhelm Röntgen @1894

Solution of Phase Problem by Coherent Diffraction Imaging

Solution of Phase Problem by CDI

CXDI Experiment at BL12XU, SPring-8 -- D. Noh, KIST

Diffraction Pattern of ~2.5 um spacing Au dots on Si3N4 membrane

- E = 7.5 KeV

- 1.17m Sample to CCD distance
- Centro-symmetry

Reconstructed image

- HIO Algorithm (170 iteration)
- Center Patched

Electron Coherent Diffractive Imaging of Single MgO Nano-Particle

Nano-Area Electron Diffraction Experiment

Camera length - 100 cm. Exposure time - 3 seconds.

Phase recovery at atomic resolution??

Recovered by CDI exit surface wave function of MgO nano-particle

Modulus (red color) and phase (blue color) of the exit wave integrated along corresponding rectangular selection

Enlarged view of the exit wave indicated by square

Surface roughness of water measured by x-ray reflectivity

A. Braslaw, et al., PRL 54 (1985)

FIG. 3. (a) The measured x-ray reflectivity of water (squares) vs θ . The solid line is the convoluted Fresnel form as described in the text. The dashed line includes $|\Phi(Q)|^2$. Part (b), expanded version on a linear scale for small θ ; part (c), water reflectivity measured with use of a rotating-anode x-ray source. For $\theta \ge 0.01$ the signal is dominated by dark counts.

+ The prism: Energy Analyzer (energy resolution)+ The eye: Detector (sensitivity)

 Inelastic X-ray Scattering an energy resolution 10⁷ with 10 keV photons

Do not waste photons and have fun at experiments!

The End