Coherance

Tsuneaki Miyahara, Tokyo Metropolitan Univ.

1) Description of light in the phase space

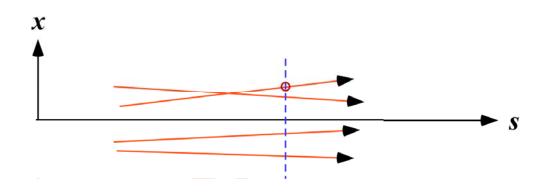
First-order spatial coherence: Experiments

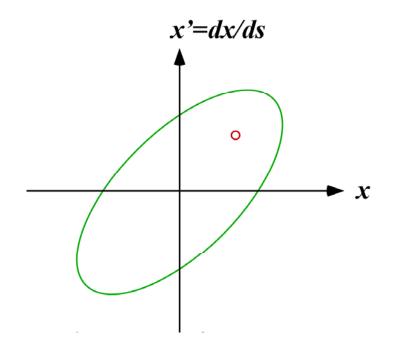
First –order temporal coherence

Description of light in the 6-dimensional phase space

- 2) Characteristics of undulator radiation
- 3) Second-order coherence and photon statistics Experiments: two-photon correlation
- 4) Coherence and density matrix
 Observation of subspace, decoherence
- 5) Pulse compression

I. Description of light in the $(x, x', y, y', \omega, t)$ space

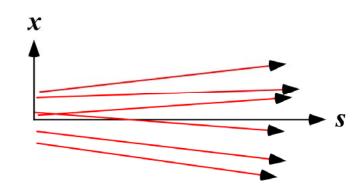


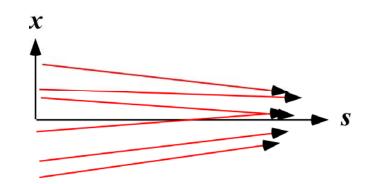


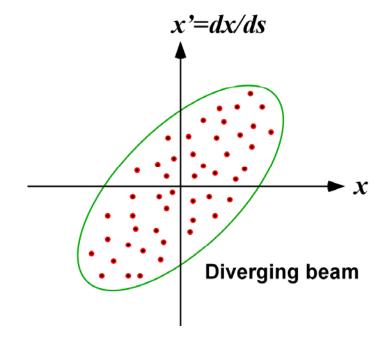
Trick:

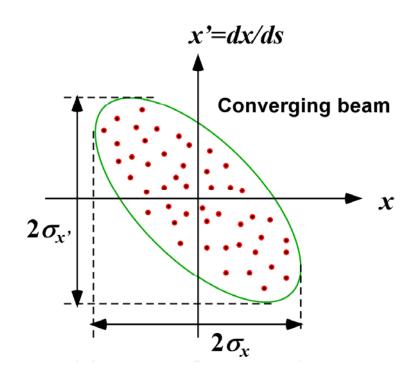
Describe light geometrically and introduce uncertainty principle of light(Fourier limit)

ω→t space is treated as same as the position – momentum space









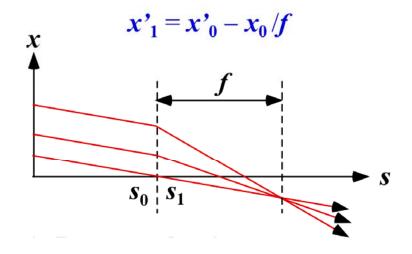
$$x_1 = x_0 + x''$$

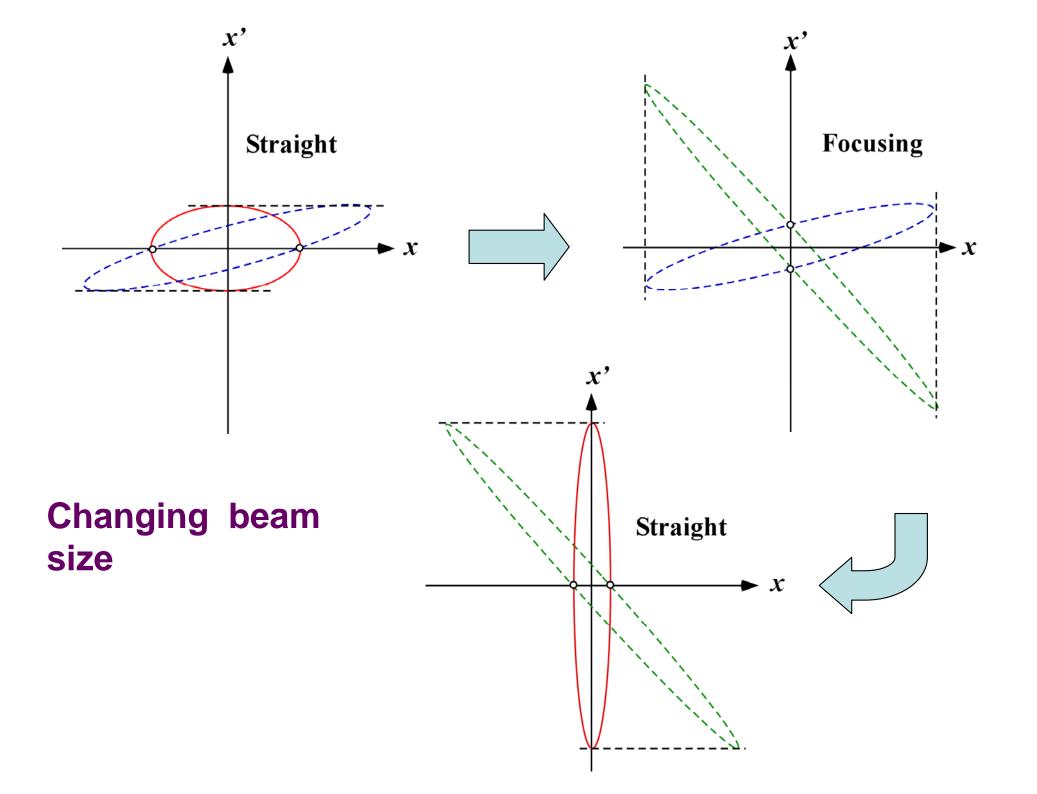
$$l$$

$$s_0$$

$$s_1$$

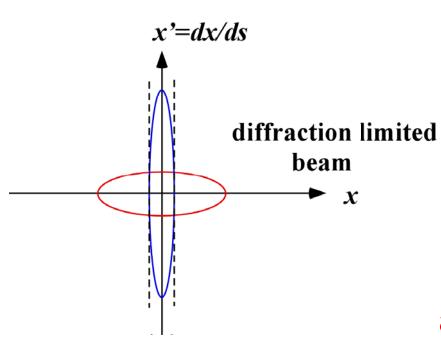
$$\begin{pmatrix} x_1 \\ x_1' \\ \end{pmatrix} = \begin{pmatrix} 1 & l \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x_0 \\ x_0' \\ \end{pmatrix}$$





Diffraction limited beam

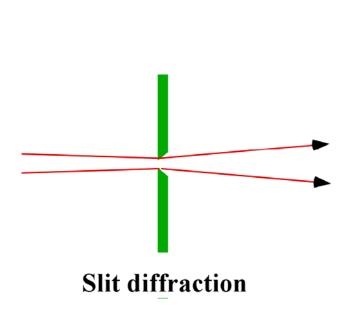
Because of uncertainty principle the minimum area of the ellipse $= \lambda/4$

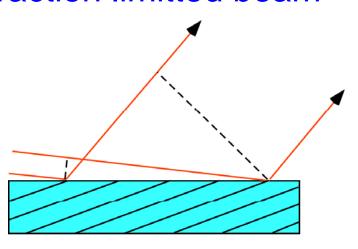


Downsizing the beam makes the beam divergence larger

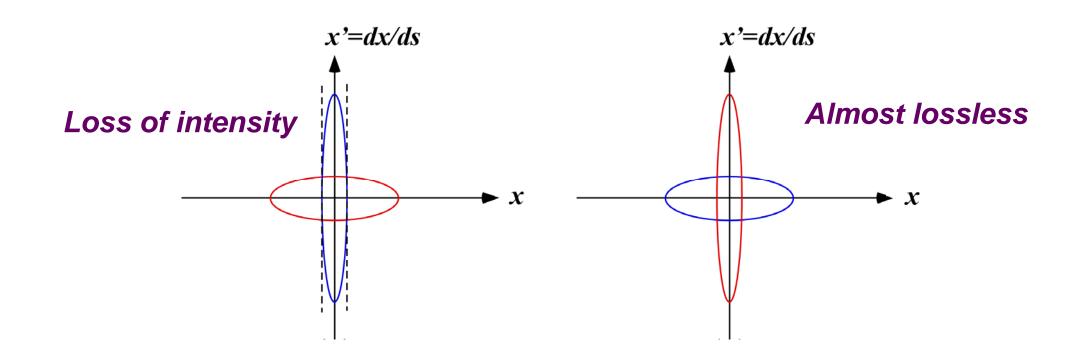
aussian beam: Beam with standard deviation of distribution described by an ellipse

Conservation of the emittance of diffraction limitted beam





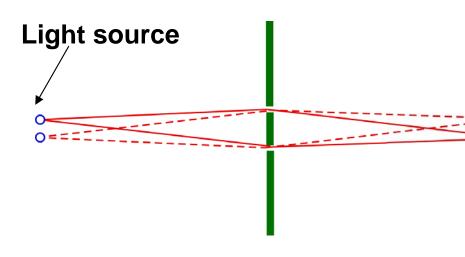
Asymmetric Bragg reflection



First- order spatial coherence

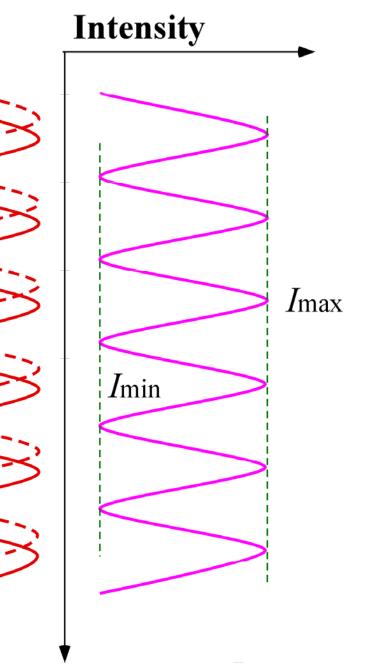
Assuming $\Delta \omega = 0$

Young's double slit experiment



$$V = \frac{I_{\text{max}} - I_{\text{min}}}{I_{\text{max}} + I_{\text{min}}}$$

Contrast: first-order coherence



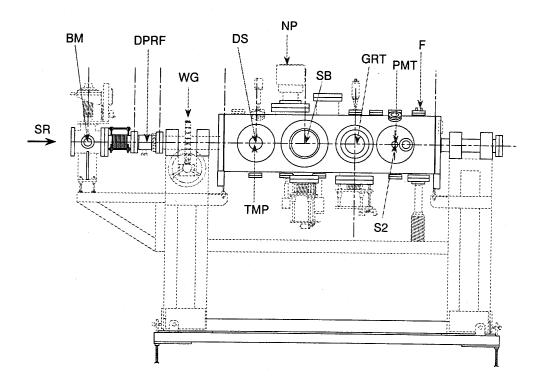


Figure 4.4: Side view of the Young's interferometer.

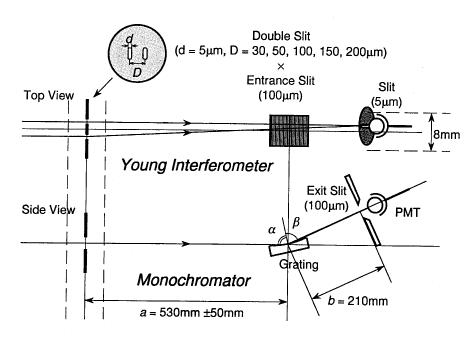


Figure 4.5: Design of the monochromator.

Y. Takayama (Doctor theses)

Bending radiation

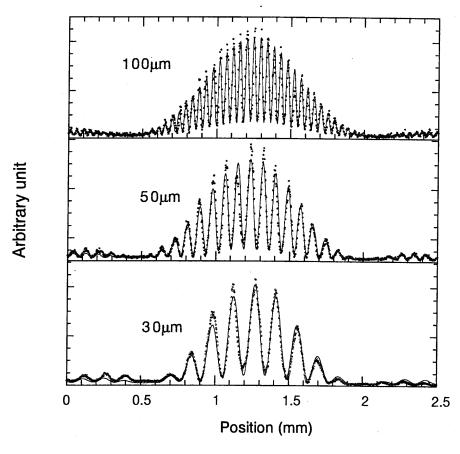


Figure 5.5: The interference patterns for E=100 eV at BL-12A. The direction of the double slit is vertical.

Undulator radiation

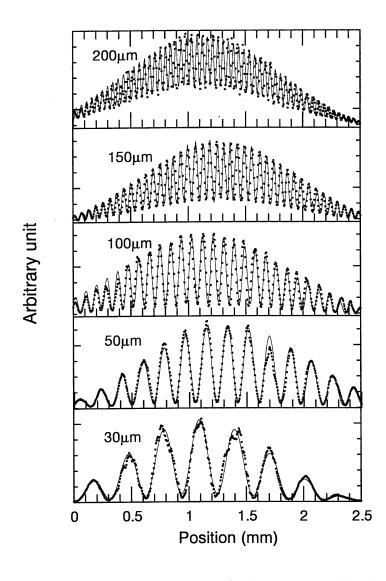


Figure 5.15: The interference patterns for $E=100~{\rm eV}$ at BL-28A. The direction of the double slit is vertical.

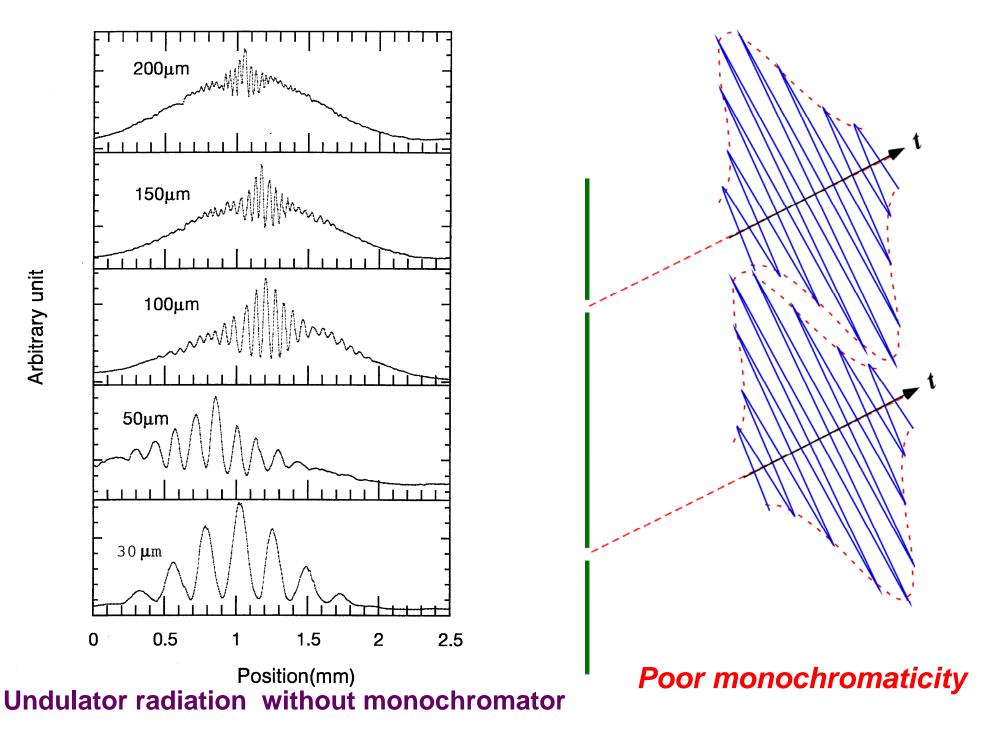
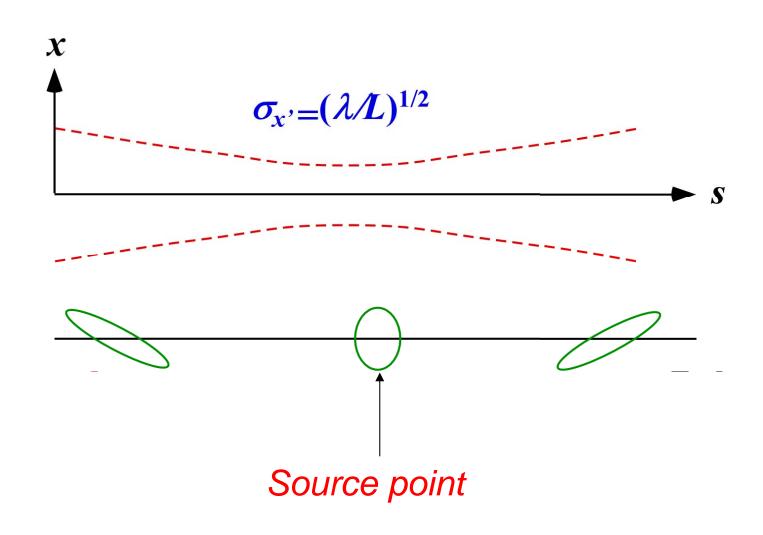


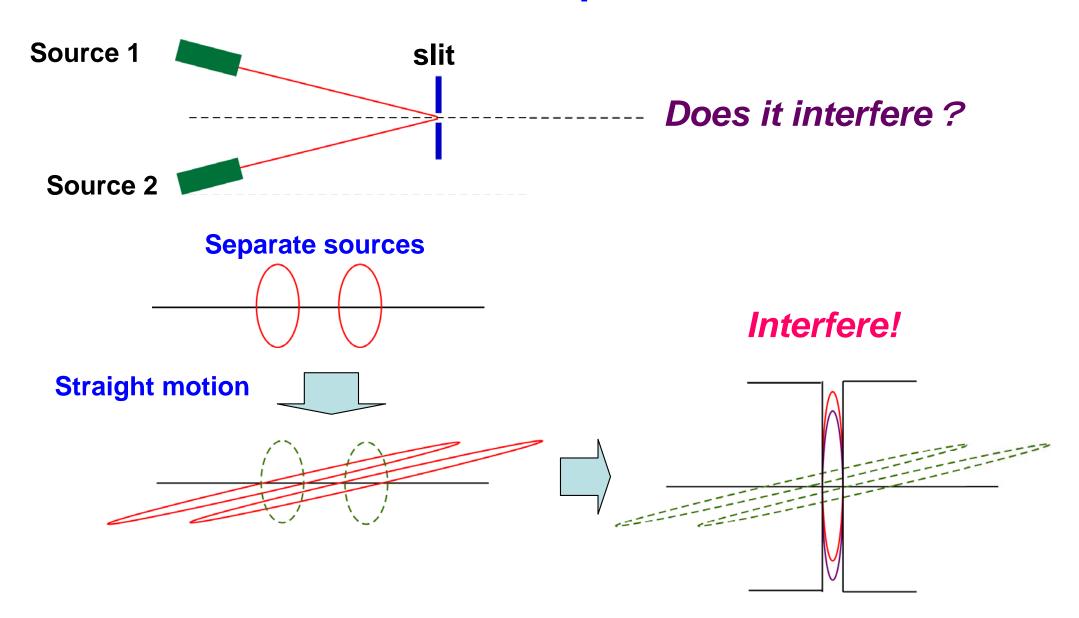
Figure 5.21: The interference patterns for the direct beam at BL-28A. The direction of the double slit is vertical.

Where is the source point of undulator radiation?

When the electron emittance is much smaller than the diffraction limit,

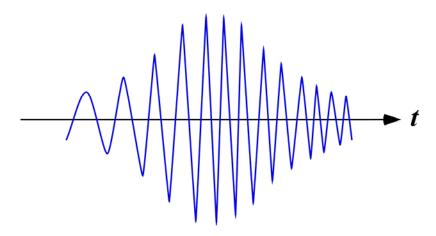


First -order coherence depends on observation

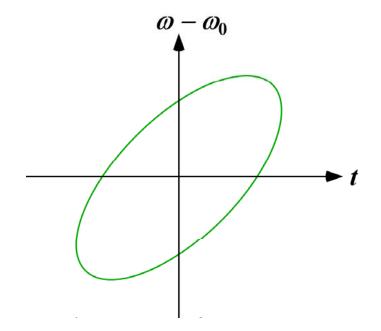


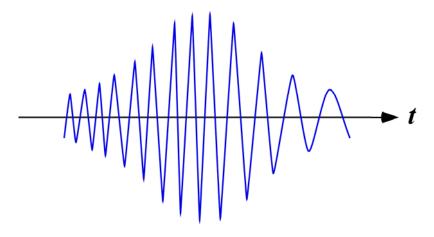
The similar thing happens in ω –t space.

Description in ω -t space

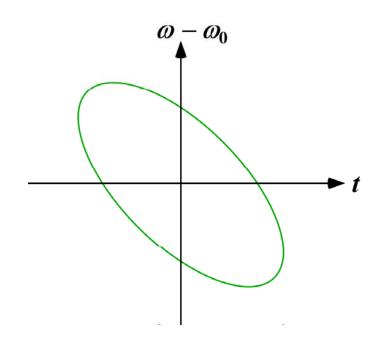


down-chirped pulse



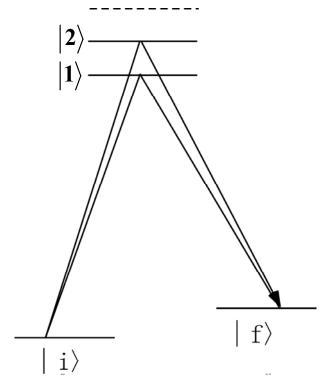


up-chirped pulse



Temporary "separate" coherence

"Dynamical" quantum beats (more degrees of freedom)



C₁:probability to come to 1(time-dependent)

C₂:probability to come to 2(time-dependent)

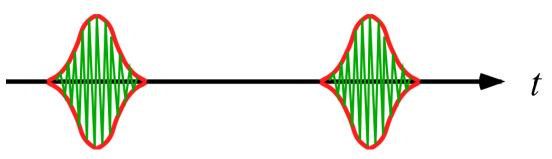
.

C_n:probability to come to n(time-dependent)

* Special case: coherent motion

 $C_n \propto (1/n!)^{1/2} \exp(-in\Omega t) A^n$

Experiments by P.Corkum et. al.



Phase relation between the two wave packet

Second-order coherence

=Correlation between intensities

(First-order coherence= correlation between amplitudes)

$$S \propto I_1 I_2 \left(\tilde{A} + \kappa \frac{\tau_o}{T_R} |\gamma_{12}|^2 \right)$$

R. Z. Tai et al. Phys. Rev. A **60** (1999)

Two-photon correlation is proportional to wave packet length.

Width of the slit $D(\gamma_{12})$ is changed to change γ_{12}

A : accidental correlation

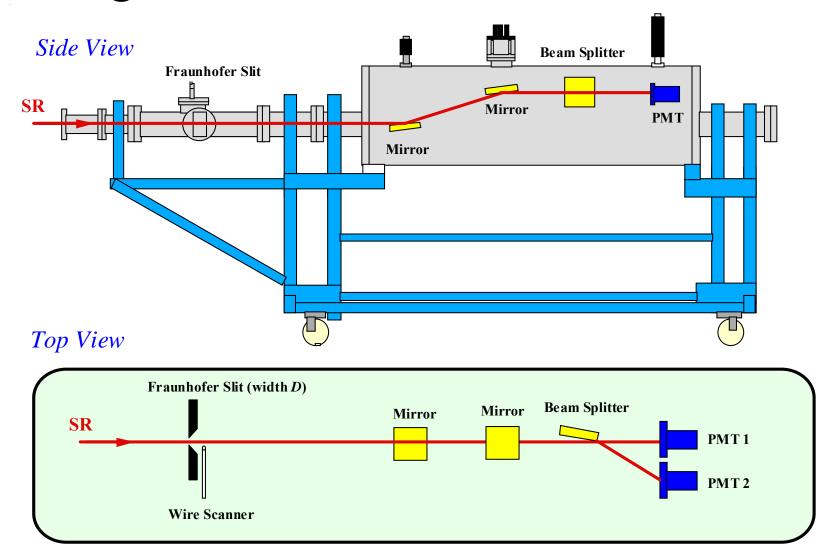
 κ : duty ratio of signals

 T_R : response time of detectors

 τ_{c} : wave packet length

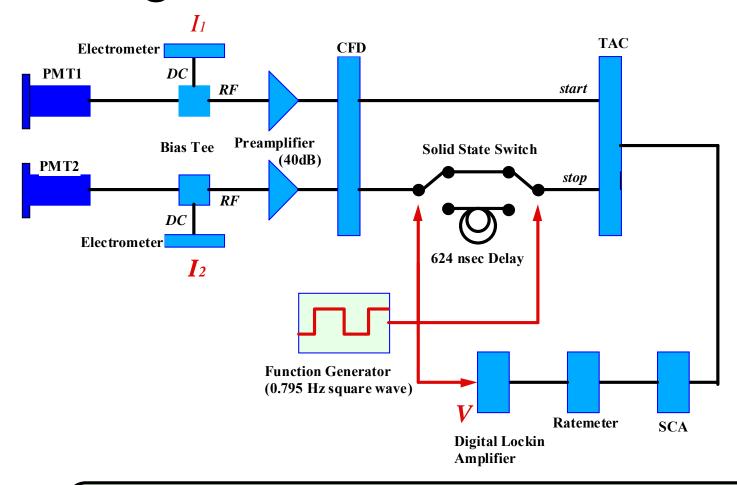
 γ_{12} : first-order spatial coherence

Design of the Vacuum Chamber



Tai et. al., Rev. Sci. Instrum. 71 (2000) 1256.

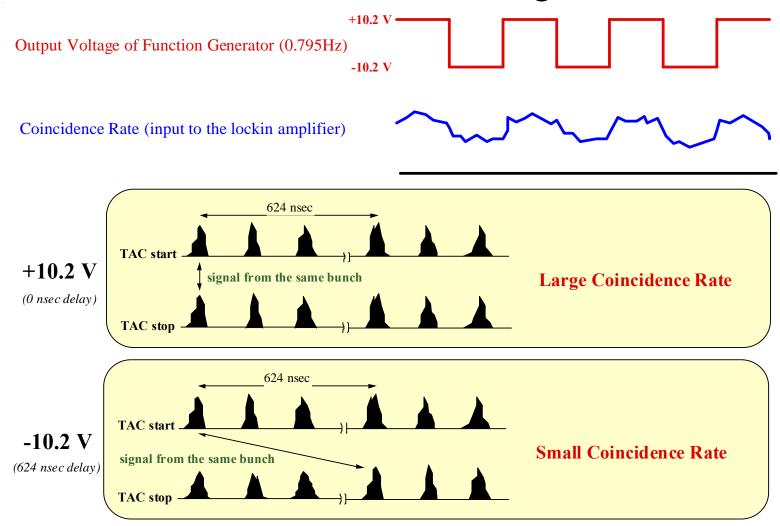
Brief Diagram of the Electric Circuit



 $V_x = G(D) I_1 I_2 + N_x$

G(D) is of the second order spatial coherence on the Fraunhofer slit.

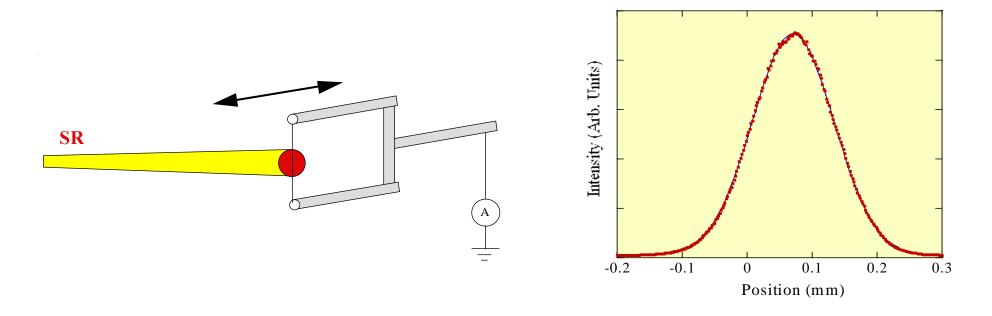
Timing of Delay-Time Modulation and Control Voltage



Experimental Condition

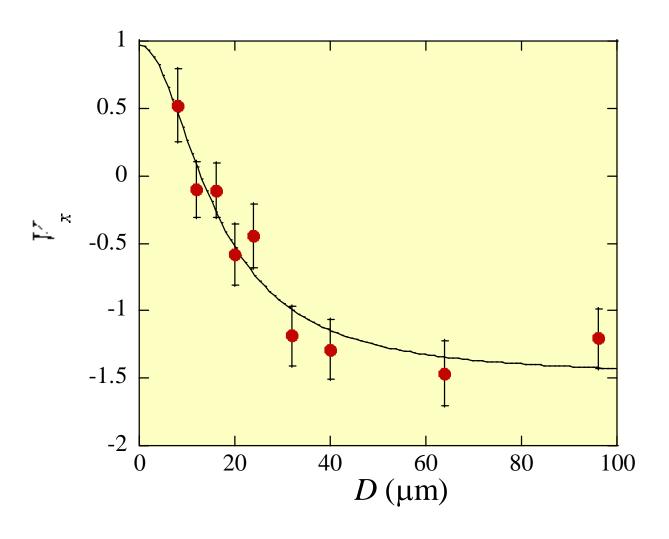
- Photon Energy 55 eV
 (energy resolution E/ΔE ~ 10000)
- Coherence in the horizontal direction was measured.
- Accumulation time for the measurement of the two-photon correlation for a slit width was about 4 hours.

Beamsize Measurement



- Tungsten-wire scanner (50 μm thickness) was used.
- Beamsize $\Sigma = 60.9 \mu m$ (Gaussian Approximation $I(x) = I(0) \exp(-x^2/(2 \Sigma^2))$)

An example of two-photon correlation



Characteristic of chaotic radiation

R.Z. Tai et. al., Phys. Rev. A60 3262 (1999) Y. Takayama et al. ,J. Synchrotron Rad.10 303 (2003)

Two spaces with density matrix

subspace a, b: whole space: $|a\rangle \otimes |b\rangle$

vectors in $a:\alpha,\beta,\gamma,\delta$

vectors in *b* : *k*, *l*, *m*, *p*, *q*

$$\sum_{\alpha k} \rho_{\alpha \alpha k k} = 1$$

1) expectation value of operator A

$$\langle A \rangle = \operatorname{Tr}(\mathbf{\rho} A) = \sum_{\gamma m} \sum_{\beta l} \rho_{\gamma \beta m l} \langle \beta | \langle l | A | m \rangle | \gamma \rangle$$

When A does nothing on b (not observing b)

$$\langle A \rangle = \sum_{l} \sum_{\beta \gamma} \rho_{\gamma \beta l l} \langle \beta | A | \gamma \rangle = \sum_{k} \sum_{\alpha \beta} \rho_{\beta \alpha k k} \langle \beta | A | \alpha \rangle$$

Time evolution

Hamiltonian: $H = H_a + H_b + H_{ab}$

Eigen energies of H_a in $a:E_{\alpha}$

Eigen energies of H_b in $b:E_k$

$$|\alpha\rangle = \exp\left(-\frac{i}{\hbar}E_{\alpha}t\right) \qquad |k\rangle = \exp\left(-\frac{i}{\hbar}E_{k}t\right)$$
$$\frac{d}{dt}\langle A\rangle = \operatorname{Tr}(\dot{\mathbf{p}}A) = \sum_{l}\sum_{\beta\gamma} \left\{\dot{\rho}_{\gamma\beta ll} + \frac{i}{\hbar}(E_{\gamma} - E_{\beta})\rho_{\gamma\beta ll}\right\} \langle \beta|A|\gamma\rangle$$

If A does not observe subspace b,

$$\frac{d}{dt}\langle A \rangle = \sum_{\beta\gamma} \left\{ \dot{\rho}_{\gamma\beta}^b + \frac{i}{\hbar} \left(E_{\gamma} - E_{\beta} \right) \rho_{\gamma\beta}^b \right\} \langle \beta | A | \gamma \rangle \tag{1}$$

Coherence and density matrix

The equation of motion is,

$$\frac{d}{dt}\langle \mathbf{A} \rangle = \text{Tr}(\dot{\mathbf{p}}\,\mathbf{A}) = \sum_{l} \sum_{\beta\gamma} \left\{ \dot{\rho}_{\gamma\beta ll} + \frac{i}{\hbar} \left(E_{\gamma} - E_{\beta} \right) \rho_{\gamma\beta ll} \right\} \langle \beta | \mathbf{A} | \gamma \rangle$$

When b is not observed: trace out for b

$$\mathbf{\rho}_{a} = \operatorname{Tr}_{b} \mathbf{\rho} = \sum_{m} \sum_{\alpha\beta} |\alpha\rangle\langle\beta| \rho_{\alpha\beta mm} = \sum_{\alpha\beta} |\alpha\rangle\langle\beta| \left(\sum_{m} \rho_{\alpha\beta mm}\right)$$

When we define

$$\sum_{m} \rho_{\alpha\beta mm} = \rho_{\alpha\beta}^{b} \qquad \text{then}$$

$$\mathbf{\rho}_{a} = \sum_{\alpha\beta} \rho_{\alpha\beta}^{b} |\alpha\rangle\langle\beta| \qquad \text{and} \qquad \mathbf{\rho}_{a}^{2} = \sum_{\alpha\beta\gamma} \rho_{\alpha\gamma} \rho_{\gamma\beta} |\alpha\rangle\langle\beta|$$

Condition for coherence: $\rho_a = \rho_a^2$

For all
$$\alpha$$
, β
$$\rho_{\alpha\beta}^b = \sum_{\gamma} \rho_{\alpha\gamma} \rho_{\gamma\beta}$$

A: broken symmetry operator

space a: electronic system, (creation, annihilation operators) c_{α}^{+}

space b: bosonic system a_k^+ a_k^-

Interaction Hamiltonian:

$$H_{ab} = c_{\alpha}^{\dagger} c_{\beta} a_{k} \langle \alpha | A | \beta \rangle + c.c.$$

Assuming correlation (entanglement)

$$|\psi\rangle = \frac{1}{\sqrt{2}}(|e\rangle|n\rangle + |g\rangle|n+1\rangle)$$

Then matrix element of A is,

$$\rho_{\alpha\beta}^b = \sum_{l} \rho_{\alpha\beta ll} = 0 \qquad (\alpha \neq \beta)$$

 $\langle \alpha | A | \alpha \rangle = 0$ and $\langle A \rangle = 0$ "dipole moment" is zero.

Conclusion of density matrix consideration:

Partial observation of the system can reduce the coherence in subspace.

Examples:

- 1) If we observe light coming from one slit in the Young's double slit experiment, then no interference.
- 2) If we do not observe the photon field, the expectation value of the dipole moment of the system is zero.

Glauber's coherent satate

$$|\alpha\rangle = \exp\left(-\frac{|\alpha|^2}{2}\right) \sum_{n=0}^{\infty} \frac{\alpha^n}{\sqrt{n!}} |n\rangle$$

$$a|\alpha\rangle = \alpha|\alpha\rangle$$

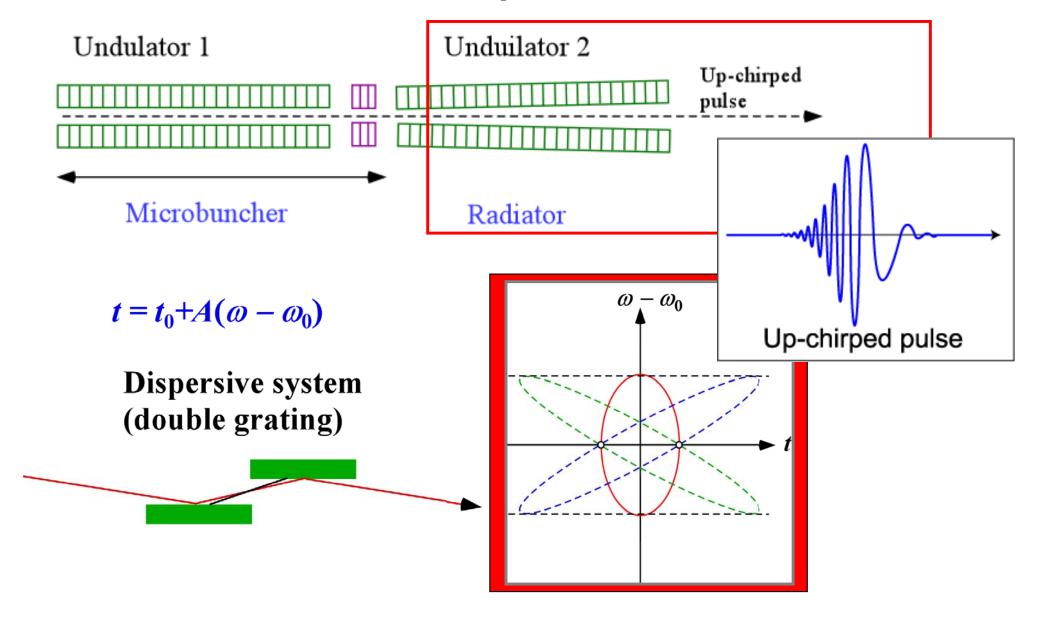
$$E \propto a^* + a$$

represents a classical electromagnetic wave, lasers.

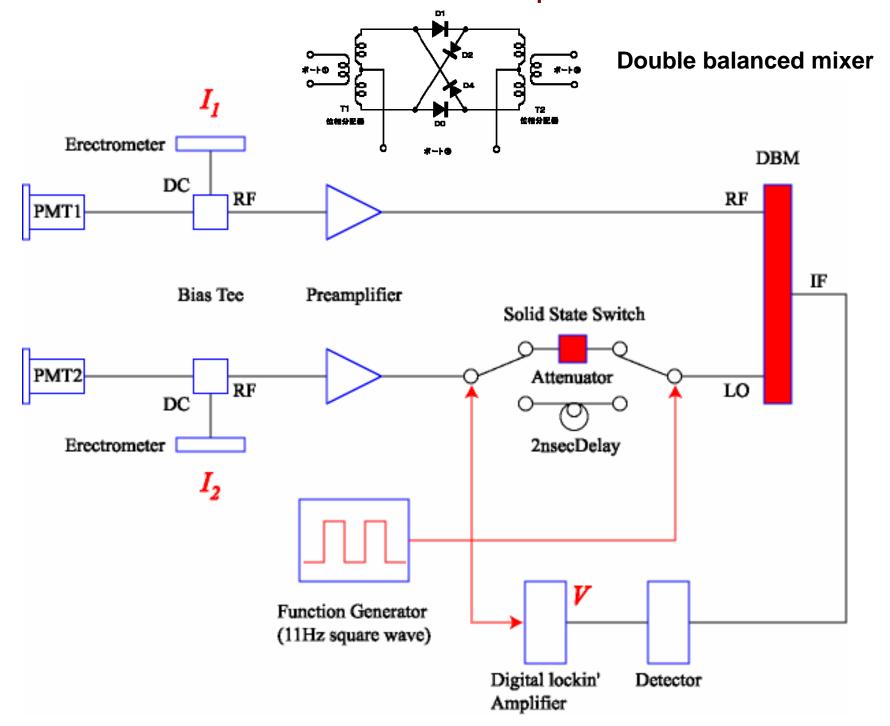
Expectation value of the electric field: sin at

IV. Outlook

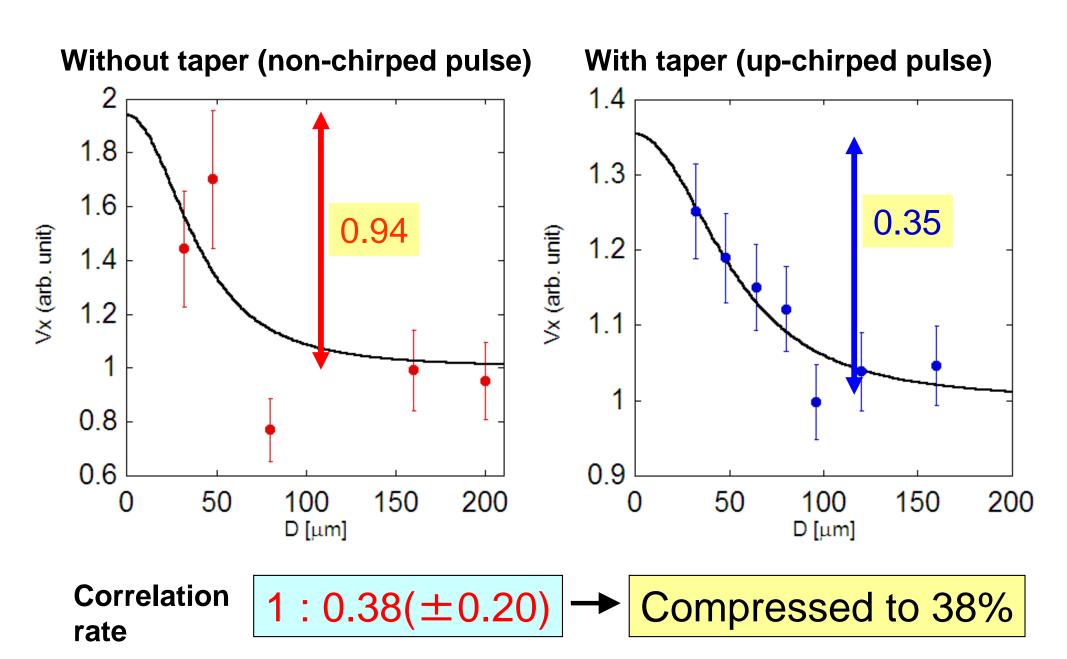
1) Production of ultrashort pulse < 1 fsec



Electronics of the modulation technique to detect correlation



Results of two-photon correlation



Summary

First-order coherence

- 1) First-order coherence depends on how we observe the light.
- 2) First-order coherence can be improved with sacrifice of intensity.

 The loss of intensity is smaller when the source has smaller emittance.
- 3) First-order spatial coherence is easily observed in Young's experiments.
- 4) The idea of first-order spatial coherence can be applied to the $\omega-t$ space.
- 5) Observation of a part of the system could reduce the coherence., corresponding to tracing out the density matrix in a sub-space.

Second-order coherence

- 1) Measurement of two-photon correlation gives information of photon statistic and the wave packet length of a photon.
- 2) Using a tapered undulator and a double grating system, the wave packet length can be compressed.