New Scientific Possibilities & Directions

Jun'ichiro Mizuki

Quantum Beam Science Directorate Japan Atomic Energy Agency (JAEA)

-In situ

- Dynamics

Energy tunability

Resonance Anomalous effect

Quantum Mechanical Description

Free particle:
$$\implies H = \frac{P^2}{2m}$$

Interaction with an electromagnetic

$$H = \frac{\left(\vec{P} - e\vec{A}\right)^2}{2m} = \frac{P^2}{2m} + \frac{e^2}{2m}A^2 - \frac{e}{m}\vec{P} \cdot \vec{A}$$

 $\frac{\langle f|H_2|n\rangle\langle n|H_2|i\rangle|^2}{E_i-E_n}$

 $\times \rho(\varepsilon_f),$

Transition probability W:

 $H_1|i\rangle$

ħ

$$E_i = \hbar \omega + E_a$$

Energy selectivity

Use of anomalous dispersion

(a) Photoelectric absorption

(b) Thomson scattering

(c) Resonant scattering

 $f(\mathbf{Q},\omega) = f^{0}(\mathbf{Q}) + f^{\prime}(\omega) + if^{\prime\prime}(\omega)$

K-K relation

From Elements of modern x-ray physics by J. Als-Nielsen and D. McMorrow

Marriage between XRD and XAFS

XAFS & DAFS

Life time of catalytic activity

Y. Nishihata, J. Mizuki, et al., Nature 418 ('02) 164

DXAFS (Energy Dispersive XAFS)

Ion

chamber

Data acquisition time

DXAFS

White x-ray

lon

chamber

Dispersive XAFS (DXAFS) for studying dynamic

Live in a convenient & sophisticated Society - new information & communication tech -

Semiconductor nano-structure

Surface diffractometer + MBE

-study of reaction front-

M. Takahasi J. M. et al., Jpn. J. Appl. Phys. 41 ('02) 6247

Experimental configuration

Interpretation of CCD images

4.9ML InAs at 480°C

 $I(2\theta, \alpha_{\rm f}) \propto T(\alpha_{\rm i}, z)T(\alpha_{\rm f}, z)S(2\theta)$

 $S(2\theta)$: kinematical θ -2 θ spectrum strain (reciprocal space)

 $T(\alpha_{i,f}, z)$: multiple-diffraction effect

→ height (real space)

Discover new scientific phenomena and invent new materials

How do we know the potential for electrons?

Elementary Excitations in Solids

 $\chi(Q, E) = -(Q^2/4\pi^2 N) 1/\epsilon(Q, E)$

Dynamical dielectric function

RIXS of 3d transition elements

K-edge (1s→4p, several keV)
(a) absorption
(b) interaction between
1s core-hole and 3d electron
(c) X-ray emission

Set-up of Inelastic Scattering Spectrometer at BL-11XU

Observed energy Resolution at 6.5 keV

Picture of the spectrometer at BL-11 XU, SPring-8

Focusing mirror-

`analyzer

detector

Mechanism of High T_c superconductor ?

Symmetry of doping-phase diagram

Schematic diagram of electronic states

X=0.15

Calculated by K. Tsutsui

The electron involved in dynamical density response function can be selected by RIXS !

K. Ishii, J. M. et al., PRL. 94 ('05)207003

Required energy resolution

ΔE~0.5eV

Inter-band excitation: "U"~2eV

Excitations across the Mott / charge-transfer gap

Intra-band excitation: "t'~0.4eV

Excitations within bands across the Fermi level

Low-energy excitation: "J"~0.1eV

Excitations related to the spin degree of freedom

ΔE~0.1eV

ΔE~0.05e\

Importance of the collaboration between Experiment and theory

What does the phonon play a role on superconducting?

Incident E(keV)	Resolution(meV)	Spot size(µm ²)
21.747	1.6	60 x 80
15.816	6.0	120 x 90

T. Fukuda, J. Mizuki, et al., P. R. B. in press

Dynamics in time domain

Domain Dynamics by Coherent X-ray Diffraction

Future direction for SR performance:

more lower emittance —— better spatial coherence

more shorter pulse duration —> better time resolution

XFEL

Photon number in a coherent volume

Longitudinal (temporal) coherence: $\sigma_t \sim 2h/\Delta \omega$

Transverse (spatial) coherence: $\sigma_{x,y} \sim \lambda \cdot L/2 \pi S_{x,y}$

Coherent volume: Vc = $\sigma x \cdot \sigma Y \cdot \sigma t = \lambda^2 \cdot L^2 \cdot 2h/(4\pi^2 \cdot S^2 \cdot \Delta \omega)$

Beam Volume:V = $\Delta X \cdot \Delta Y \cdot \Delta t$

Bose degeneracy: $\delta = n \cdot Vc / V \sim 0.1$ for SPring-8 for XFEL(SASE-mode): $\delta \sim 10^{10}$!!

non-linear optical phenomena

SR

Use of coherence, Bose degeneracy, under multi-extreme condition

