

Inelastic X-Ray Scattering

Alfred Q.R. Baron Materials Dynamics Laboratory (RIKEN) Facilities and Utilization Division (JASRI) SPring-8

Acknowledgement: Y. Sakurai (Compton)

AQRB @ AOFSRR Cheiron School 2008

	Table Of IXS Techniques/Applications						
	Technique	Comment	Energy Scale	Information			
	X-Ray Raman	(E)XAFS in Special Cases	E _{in} ~10 keV ΔE~100-1000 eV	Edge Structure, Bonding			
	Compton	Oldest Note: Resolution Limited	E _{in} ~ 150 keV ΔE ~ keV	Electron Momentum Density Fermi Surface Shape			
•	Magnetic Compton	Weak But Possible	E _{in} ~ 150 keV ΔE ~ keV	Density of Unpaired Spins			
•	RIXS Resonant IX5	High Rate Somewhat Complicated	E _{in} ~ 4-15 keV ΔΕ ~ 1-50 eV	Electronic Structure			
	NRIXS Non-Resonant IXS	Low Rate Simpler	E _{in} ~10 keV ∆E ~ <1-50 eV	Electronic Structure			
	IXS High-Resolution IXS	Large Instrument	E _{in} ~16-26 keV ∆E ~ 0.001-100 meV	Phonon Dispersion			
	NIS Nuclear IX5	Atom Specific Via Mossbauer Nuclei	E _{in} ~ 14-25 keV ΔE ~ 0.001-100 meV	Element Specific Phonon Density of States (DOS)			

Note also: Limit to FAST dynamics (~10 ps or faster)

R

Analyzer Crystal

Collaborative R&D with NEC Fundamental Research Laboratory, H. Kimura, F. Yamamoto

Present Parameters (9.8 m Radius, 10cm Diameter)

50 or 60 μm blade, 2.9 mm depth, 0.74 mm pitch Channel width (after etch): ~ 0.15 mm 60 to 65% Active Area

Medium Resolution

Medium Resolution Spectrometer: Arm Radius: 1 to 3 m Resolution: ~0.1 to 1 eV Used for RIXS and NRIXS

BL12XU (Cai, et al) BL11XU (Ishii, et al) Also: BL39XU (Hayashi, et al)

Note difference between RIXS and NRIXS NRIXS: Choose the energy to match the optics RIXS: Resonance chooses energy -> usually worse resolution

Phonons in a Superconductor

MgB_2

Nagamatsu, et al, Nature **410**, (2001) 63.

straightforward calculation.

High T_c (39K)

Simple Structure...

Electronic Structure

Kortus, et al, PRL 86 (2001)4656

Phonon Structure

Bohnen, et al. PRL. 86, (2001) 5771.

BCS (Eliashberg) superconductor with mode-specific electron-phonon coupling. AQRB @ AOFSRR Cheiron School 2008

Larson, et al., PRL 99 (2007) 026401

Unpublished AQRB @ AOFSRR Cheiron School 2008

Orientation Dependence

Orbitals

Results of Wanneir function analysis of LDA+U calcs of Larson *et al* PRL (2007)

Scattered Intensity

SPring-8

Cluster calculations Haverkort, et al PRL (2007)

NRIXS MgB₂ Collective Excitation

PRL 97, 176402 (2006)

PHYSICAL REVIEW LETTERS

week ending 27 OCTOBER 2006 SPring-8

Low-Energy Charge-Density Excitations in MgB₂: Striking Interplay between Single-Particle and Collective Behavior for Large Momenta

Y. Q. Cai,^{1,*} P. C. Chow,^{1,†} O. D. Restrepo,^{2,3} Y. Takano,⁴ K. Togano,⁴ H. Kito,⁵ H. Ishii,¹ C. C. Chen,¹ K. S. Liang,¹ C. T. Chen,¹ S. Tsuda,⁶ S. Shin,^{6,7} C. C. Kao,⁸ W. Ku,⁹ and A. G. Eguiluz^{2,3}

FIG. 1 (color online). NIXS spectra at various momentum transfers $q \parallel c^*$ axis showing the low-energy collective mode, where $q = 8.9 \text{ mm}^{-1}$ corresponds to the first boundary of the extended BZ. The total energy resolution was 65 meV for (a), and 250 meV for (b).

FIG. 2 (color). Theoretical $S(\mathbf{q}, \omega)$ calculated in the present work in false color log scale as a function of energy and momentum transfer showing the cosine energy dispersion of the low-energy collective mode. Filled squares and triangles mark the energy positions obtained from the NIXS spectra shown in Fig. 1, whereas filled circles are data from another set of spectra taken with a total energy resolution of 250 meV.

Excitation repeats from one zone to the next...

Nuclear Inelastic Scattering

First Demonstrated (Clearly) by Seto et al 1995

Isotope	Transition energy (keV)	Lifetime (ns)	Alpha	Natural abundance (%)
¹⁸¹ Ta	6.21	8730	71	100
¹⁶⁹ Tm	8.41	5.8	220	100
⁸³ Kr	9.40	212	20	11.5
⁵⁷ Fe	14.4	141	8.2	2.2
¹⁵¹ Eu	21.6	13.7	29	48
¹⁴⁹ Sm	22.5	10.4	~ 12	14
¹¹⁹ Sn	23.9	25.6	~ 5.2	8.6
¹⁶¹ Dy	25.6	40	~ 2.5	19

Mössbauer Resonances Exist in Different Nuclei...

Resonances have relatively long lifetimes so that if one has a pulsed source, one can separate the nuclear scattering by using a fast time resolving detector.

