Cheiron School 2008 by AOFSRR SPring-8

5 October 2008

Protein Crystallography

High Energy Accelerator Research Organization (KEK) Institute of Materials Science Photon Factory Structural Biology Research Center **Soichi Wakatsuki** *soichi.wakatsuki@kek.jp* http://pfweis.kek.jp/eng/index.html

Outline

- 1. Introduction to protein crystallography
- 2. High throughput technologies for synchrotron experiments systems approach
- 3. Structural proteomics on post-translational modification and transport of proteins: protein-protein interactions in membrane traffic

Synchrotron Facilities with PX in Japan

and new ones coming up

Role of Structural Biology

E. Coli cell

David S. Goodsell, Scripps Institute, http://www.scripps.edu/mb/goodsell/₅

Endocytosis of toxin by a clathrin vesicle

David S. Goodsell, Scripps Institute, http://www.scripps.edu/mb/goodsell/6

Panoramic view of a eukaryotic cell

http://www.scripps.edu/mb/goodsell/

COLORS: proteins in blue, ribosomes in magenta, DNA and RNA in red and orange, lipids in yellow, and carbohydrates in green.

David S. Goodsell, Scripps Institute

The Worldwide Protein Data Bank (wwPDB)

http://www.wwpdb.org/index.html

David S. Goodsell, Scripps Institute

Acetylcholine esterase

Prof. Joel Sussmann Weizmann Institute, Israel

• ..¥Joel Sussman¥richardnew.mpg

Future: automated/integrated system

Expression and purification

Crystallization robot

Crystallization

Crystal harvesting robot

Crystal harvesting

Data analysis

Automated data collection

Mouting & data collection

Flow of protein structure analysis

Guanine nucleotide exchange factor Sec12p

ttcg tgacagctag ttataacgtc gggtatcctg cgtacggtgc aaaatttttg 61 aataacqaca cattacttqt qqcaqqcqqt qqaqqaaq qaaacaatqq cataccaaac 121 aagctgacgg tcttgcgcgt ggatcctacc aaagatactg agaaggaaca gtttcatata 181 ttgagcgagt ttgcattgga agacaacgac gactctccta ctgcaattga cgcttccaag 241 ggtatcattt tggttggctg caatgaaaat agcactaaga ttacccaagg taaaggtaat 301 aagcacttga gaaaatttaa atacgataaa gtgaatgatc aattggagtt cctcactagt 361 gtagactttg acgcatctac aaatgcggat gactacacga agctggttta tatttcacga 421 gaaggtaccg ttgcagctat cgcatcatct aaagtacctg ctataatgag aatcattgac 481 ccgagcgact tgacagagaa gtttgagatc gagactaggg gtgaagtaaa ggatttacac 541 ttttccactg atggtaaggt tgttgcttat atcaccggtt ctagcttgga agtgatttca 601 acagtgactg gaagttgcat tgctaggaaa acagattttg ataagaattg gagtttatct 661 aaaataaact tcatagccga tgacacagta ttgatagcag cctctttaaa aaaagggaaa 721 gqtattqtqc tqaccaaaat aaqcatcaaa tcaqqaaaca cttccqtatt aaqatccaaa 781 caaqtqacaa acaqattcaa aqqqattact tctatqqatq tcqacatqaa qqqtqaattq 841 gcggtactgg caagtaatga caattccata gctcttgtga aactaaaaga cctgtcaatg 901 totaaaatat toaaacaago toatagtttt gooattacag aggtoactat ototooggac 961 tctacatatg tggcgagtgt ttcggcagcc aacactatcc acataataaa attaccgctt 1021 aactacgcca actacacctc aatgaaacaa aaaatctcta aatttttcac caacttcatc 1081 cttattqtqc tqctttctta cattttacag ttctcctata agcacaattt gcattccatg 1141 cttttcaatt acgcgaagga caattttcta acgaaaagag acaccatctc ttcgccctac 1201 gtagttgatg aagacttaca tcaaacaact ttgtttggca accacggtac aaaaacatct 1261 gtacctagcg tagattccat aaaagtgcat ggcgtgcatg agacgagttc tgtgaatgga 1321 actgaagtct tatgtactga aagtaacatt attaatactg gaggggcaga gtttgagatc 1381 accaacgcaa cttttcgaga aatagatgat gcttga

No. of bases: 1416

FVTASYNVGYPAYGAKFLNNDTLLVAGGGGEGNNGIPNKLTV LRVDPTKDTEKEQFHILSEFALEDNDDSPTAIDASKGIILVGCNENSTKITQGKGNKH LRKFKYDKVNDQLEFLTSVDFDASTNADDYTKLVYISREGTVAAIASSKVPAIMRIID PSDLTEKFEIETRGEVKDLHFSTDGKVVAYITGSSLEVISTVTGSCIARKTDFDKNWS LSKINFIADDTVLIAASLKKGKGIVLTKISIKSGNTSVLRSKQVTNRFKGITSMDVDM KGELAVLASNDNSIALVKLKDLSMSKIFKQAHSFAITEVTISPDSTYVASVSAANTIH IIKLPLNYANYTSMKQKISKFFTNFILIVLLSYILQFSYKHNLHSMLFNYAKDNFLTK RDTISSPYVVDEDLHQTTLFGNHGTKTSVPSVDSIKVHGVHETSSVNGTEVLCTESNI INTGGAEFEITNATFREIDDA

No of amino acid residues: 471

Model structure of Sec12

(1416-3)/3=471

Phase Determination using Multiple Anomalous Dispersion

Methionine

Sulfur → Selenium (SeMet)

A ribbon representation of a protein with 70 selenium atoms superimposed in colour. Equivalent selenium atoms from molecule to molecule are coloured the same.

FVTASYNVGYPAYGAKFLNNDTLLVAGGGGEGNNGIPNKLTV LRVDPTKDTEKEQFHILSEFALEDNDDSPTAIDASKGIILVGCNENSTKITQGKGNKH LRKFKYDKVNDQLEFLTSVDFDASTNADDYTKLVYISREGTVAAIASSKVPAIMRIID PSDLTEKFEIETRGEVKDLHFSTDGKVVAYITGSSLEVISTVTGSCIARKTDFDKNWS LSKINFIADDTVLIAASLKKGKGIVLTKISIKSGNTSVLRSKQVTNRFKGITSMDVDM KGELAVLASNDNSIALVKLKDLSMSKIFKQAHSFAITEVTISPDSTYVASVSAANTIH IIKLPLNYANYTSMKQKISKFFTNFILIVLLSYILQFSYKHNLHSMLFNYAKDNFLTK RDTISSPYVVDEDLHQTTLFGNHGTKTSVPSVDSIKVHGVHETSSVNGTEVLCTESNI INTGGAEFEITNATFREIDDA No. of amino acid residues: 471 including 6 methionines

Protein crystallization by vapor diffusion method

- Protein solution drop (containing water, precipitant and protein molecules)
 - Precipitant molecule
 - Water molecule
 - Protein crystal

Drawing by Prof. Yoshiki Higuchi

Protein Crystallization and crystal observation robot system

Fig. 3

Protein Crystallization and crystal observation robot system

Protein Crystals

~10¹² proteins in a typical (good size) crystal

bar=0.1 mm

Crystallization method: hanging drop vapor diffusionProtein conc.:13 mg / mlPrecipitant:17 % (w/v) PEG3350, 0.2 M KH2PO4Buffer:0.1 M Tris-HCl (pH 7.5)Temperature:20 °C

Crystal of Human GGA1 VHS domain

Packing of proteins in a crystal 30~70 % volume of protein crystals is solvent!

Blue Tongue Virus Core Particle 1 $P2_{1}2_{1}2$ 755 X 796 X 825 Å³ ESRF ID14/EH3 **Detector: Imaging Plate** Crystal to 1250 det distance mm 0.918Å Wavelength Osc. Angle 0.1 deg 570 Å Exp. Time 100 sec (20 pixels) Pixel size 100 mm **Beam size** 100 mm **FWHM** 181 mm 24

Methods to Determine Phases

•Good method as long as heavy atom derivatives are available

- ·Multiple data sets need to be collected quickly
- Possible to use for extremely large complexes

Many successes

Anomalous signal from light atoms (eg: S)

- •No need for preparing heavy atoms: highly applicable for very difficult cases for which heavy atom derivatives cannot be prepared
- •Light elements need low X-ray energy for higher anomalous signal
- •Weak anomalous signal necessitates extremely highly accurate data, thus high redundancy

Still not plenty

Beam Lines

Phase determination using MAD

Absorption edge measurement

FPH(SeMet)-FP(native) difference Patterson Map

FE3(+)-FE3(-) anomalous difference Patterson Map

FPH(SeMet)-FP(native) anomalous difference Patterson Map

FE4(remote1)-FE2(edge) dispersive difference Patterson Map

Ribbon diagram of trimer of GGA1 GAT domain

Triangle is threefold axis.

X-ray Area Detectors for Synchrotron X-ray Protein Crystallography

X-ray Area Detectors for Synchrotron X-ray Protein Crystallographic Data Collection

Detectors	Pros	Cons	
On-line imaging plates	Large dynamic range, large area	Slow readout (20 to 200 sec per image) -> poor duty cycle Relatively broad PSF Relatively inexpensive	
Off-line imaging plates	Large dynamic range, large area	Slow read-out (20 to 200 sec per image) - > poor duty cycle Relatively broad PSF Cumbersome to handle	
Tiled, tapered fiber optics CCD	Fast readout (0.3 to dozens of secs)	Limited dynamic range (~<16 bits) Expensive to cover large solid angle	
Lens-coupled CCD	Large active area (300 mm diameter) Inexpensive	Has gone into market very recently, and not yet established. Large (1 m long) and heavy (100 kg)	
Flat Panel Detectors	Inexpensive, very light (~7 kg) Large active area (easily 400 mm square) Fast readout (a few seconds)	Inherent problem of noise	
Pixel Array Detectors (PAD)	Extremely good PSF Extremely Fast readout	Still under development Difficult to tile the components to cover a large solid angle	
HARP based Field Emitter Array (FEA)	Extremely sensitive (800 X CCD) Large area and very fast readout Very good PSF	At the very first stage of the development	

Detector Requirements for good PX data collection

- Large, fast, reliable and inexpensive
- Must be an integrated system data acquisition and storage data analysis archiving
- Easy to maintain

Next generation detector: large area, high sensitivity, high speed, high resolution

SPring-8 CMOS based flat panel detector development

(2) Cost down by using existing state-of-the-art technologies

Courtesy of Dr. Masaki Yamamoto 41

Continuous rotation method: (Near FUTURE) (eg. 1 X 90 degs rotation)

Continuous rotation method: (Near FUTURE) (eg. single sweep of 90 deg rotation)

PF-AR NW12: Highthroughput MAD beam line Total data collection time for 180 frames: 10 to 30 min

Long camera distance and large area size of the detector allow the data collection of crystals with large cell dimensions

NW12: data collection from very small crystals. Tool box makes manual crystal mounting easy.

KEK Photon Factory

NW12A (2003)

Crystallization

Structural Biology Research Center

6.5GeV PF-AR 2.5GeV **PF** ring i

BL-6A

BL-5A (2004)

BL-17A (2006)

SSRL-type robot installed on MAD Beamline BL-5 20 datasets/day \Rightarrow 100s datasets/day

SAM System Family

KEK-PF BL-1A, BL-5A, BL-17A, AR-NW12A, AR-NE3A

NSSRC BL13B1, BL13C1

AS 3-BM1, 3-ID Detector Sample automounter crystal Beam Britonidal conditioning toroidal mirror i Double crystal Monochromator

CLS 08B1-1(CMCF2)

SSRL BL1-5, BL7-1, BL9-1, BL9-2, BL11-1, BL11-3

> SSRL Automated Mounting system

Less time for crystal exchange

Double tongs mechanisms

NEW BL17A short gap undulator beam line: Example of small crystals (funded by JST Frontier Technology Development Project)

Provided by Dr. Tadanobu Tanaka of Showa University

Towards lower energy, higher brilliance

BL17: Mini-gap undulator & Experimental environment

- High speed shutter
 - Precision < 1 msec.
- High precision goniometer-head SOC (rotation error) < 0.7 μm
- Fast readout, large area and high gain CCD detector (ADSC Q270)

Readout1.1 secActive area270 x 270 mm²Gain21 e-/photon at 12.4 keVMinimum distance40 mm

 Automatic sample changer Exchange < 11 sec.

BL17 example

Se-MAD experiment: data collection at three xtal positions to avoid radiation damage Osaka University Atsushi Nakagawa, Harumi

- Mol weight: 37 kDa
- Xtal: 2 x 10 x 150 μm³
- 3.2 Å resolution (Se-SAD)
- Data collected at 3 positions

After density modification

High precision one axis diffractometers with XYZ stages

BL	BL-6A	NW12	BL-5	BL-17
Year started	2000*	2003	2004	2006
Max deviation (μ m)	10	2.2	1.0	0.37(2007)⇒ 0.1(2009)
Xtal size (μ m)	100	22	10	4 (2007) ⇒ 1 (2009)

BL-5 type diffractometer -> also installed on BL41XU & BL44XU, SPring8

SPring-8 BL41XU experimental hutch

Industrial Use and Collaborations between KEK and Industry (~8% of beamtime)

Astellas Pharma Beam Line: PF-AR NE3

- Expected to become stronger than AR-NW12A
- Astellas Pharma will have priority access for certain amount of beam time during 10 years from April 2009.
- The rest of the beam time can be used for general user operation including use by other pharmaceutical companies.

No. of Beam Time Proposals on Protein Crystallography Beam Lines at PF Doubled in the last 7 years.

Protein glycosylation and transport

Protein 3000 (Ministry of Education, Culture, Sports, Science and Technology)

Protein 3000 Tsukuba Structural Biology Consortium (21 groups)

63

Collaboration outside of Japan

- 1. Human sialidase: G. Tattamanti & G. Monti, Italy, (Chavas et al., *JBC*, 2005)
- 2. Human sialidase inhibitors: M.v. Itzstein, Institute for Glycomics, Griffith University, Australia
- 3. Sialidase inhibitors: Peter Colman, Australia

Steve Withers, Canada

- 4. Endocytic pathways: H. Stenmark, Oslo, Norway (Slagsvold et al. *JBC*, 2005, Hirano et al. *NSMB*, 13, 272, 2006, Hirano et al. *NSMB*, 13:1031, 2006)
- 5. Protein carbohydrate recognition in HIV infection: R. Varadarajan, Bangalore, India
- 6. Protein carbohydrate interaction, Johan Deisenhofer, Univ. Texas, USA (C.-I. Chang et al. *PNAS*, June 2005)

7. Ubiquitin recognition, Ivan Dikic, Johan Wolfgan Goethe Univ.

Frankfurt, Germany

Model for intracellular transport of N-linked glycoproteins

Complex structure of the Ca²⁺/Man₂-bound VIP36 exoplasmic/lumenal domain

Model for binding between VIP36 and high-mannose type glycoprotein, salivary α -amylase

Tadashi Satoh et al., J. Biol. Chem. (2007) 282, 28246₆₇

Small GTPases involved in vesicle transport:

Rab and Arf

Small GTPases, ARF and Rab, in vesicular

T. Shiba et al. PNAS 103, 15416, 2006

Taken from I. Jordens, et al., J.Neefjes, Traffic 2005; 6: 1070–1077 70

Transport in nuerons

Ogawa, et al., Cell, 2004

71

Membrane recruitment of effector proteins by Arf and Rab GTPases

Schematic representation of the major factors known to be involved in the constitutive recruitment of peripheral membrane proteins to the cytoplasmic face of organelles. The phosphoinositides can carry their phosphates at any combination of the three positions indicated. Most of these recruitment determinants lie at or near the surface of the

membrane, with the exception of the Rab proteins, which are linked to the bilayer via a poorly conserved carboxy-terminal region of 25 residues. This region appears to be unstructured, and so could extend up to 80 Å from the bilayer, about twice the diameter of the Rab itself [76].

FROM: Munro S. Organelle identity and the targeting of peripheral membrane proteins. Curr Opin Cell Biol. 2002, 14: 506-514.
Small GTPases involved in vesicle transport:

Rab and Arf in GTP form: effector interactions

Endocytosis of toxin

David S. Goodsell, Scripps Institute, http://www.scripps.edu/mb/goodsell/₄

http://www.hms.harvard.edu/news/clathrin/

Human GGA: a new class of adaptor proteins

GGA-GAT is indispensable for docking onto the TGN membrane

GAT domain apo-form

N-GAT & ARF1-GTP complex

Interaction surfaces of N-GAT and ARF1-GTP

GGA-GAT docks on the membrane via mostly hydrophobic interactions with Switches 1 & 2 and interswitch region of ARF1-GTP

Arf's interacation site is used by effectors and many other proteins (Kawasaki, Nakayama, &Wakatsuki, Current Opinion in Structural Biology 2005, 15, 681)

Exploitation of the human protein transport pathway by cholera toxin.

Arf1–N-GAT Arf6–CTA1 (Cholera toxin) N-GAT CTA1 GAE GGA1 VHS C-GAT 192 147 166 210 305 510 639 /45 _73 G46 G50 (1197 V/62W66 V49 V53

T. Shiba, et al., *Nature Structural Biology* 10 386-393, 2003

Structure by Wim Hol, Seattle, USA

C.J. ONeal, et al. and W.G.J. Hol, *Science* 12 August 2005

79

FIP (Family of Rab11 interacting

Rab11/ Rab11-binding domain (RBD) of FIP3

T. Shiba et al. **PNAS** 103: 15416, 2006. Also: FIP3/Rab11 by Lambright, **JMB**, Aug 26, 2006 & FIP2/Rab11 by A.R. Khan, Structure, Aug 2006

Two-fold symmetry of Rab binding domains

Zhu G, et al., *Nat. Struct. Mol. Biol.* 11, 975-983 (2004) Wu M, et al., *EMBO* J. 24, 1491-1501 (2005)

Shiba T. *et al.* PNAS 103, 15416-15421 (2006)

Two-fold symmetry of Arf/Rab binding domains

Burguete AS, Fenn TD, Brunger AT, Pfeffer SR, *Cell* 132, 286-298, 2008

First human sialidase (~neuraminidase) structure Neu2 folding and electrostatic surfaces

Ribbon diagram representation (view from the active site)

<image>

Electrostatic surface representation (blue and red regions are basic and acid surfaces respectively)

Chavas et al., J. Biol. Chem. 2005 vol 280, 469-75

Structure Based Drug Design: more efficient and lower cost for development of Anti influenza drug with little or no side effects (collab. with Italy, Australia, Canada)

Target Protein Project (5 years: 2007-2011)

- Yearly budget: 5.5 billion yen, US\$ 44.5M, 33.3 MEuro, (includes 30% overhead)
- Proposal deadline: 20 April 2007
- Selection results published: 15 June 2007
- 43 teams selected

Target Protein Project (2007-2011) The Analysis Core

Joint Proposal by SPring-8 and PF: Two New Beam Lines

Beam Lines

Target Protein Research Project (National Project)

SPring-8

Micro-focusing beamline for tiny crystals (<10 μm)

Current: 10¹² photons/sec/100x100µm² (BL41XU)

Further increasement of flux

PF

Micro-focusing beamline for sulfur-SAD phasing

User operation from April 2010.

Beamline design of BL32XU @ SPring-8 by M. Yamamoto et al.

Concepts

- 1. Making the best use of capability of SPring-8 undulator
- 2. Minimizing a number of optical elements to reduce mechanical errors
- 3. Focusing with a LARGE magnification factor

<u>Current beamline control system @ SPring-8</u> <u>by M. Yamamoto et al.</u> Multiple X-ray exposures on one/several crystals to avoid serious RD during data collection

Vector Centering:

Changing exposure position linearly in every constant frames on *One crystal*

• Multiple Centering:

Multiple exposure positions using several crystals in *One cryo-loop*

Current status of construction of BL32XU @ SPring-8

X-ray shield hutch of BL32XU @ SPring-8

Start 2007/12/21

Before construction

X-ray shield hutch of BL32XU @ SPring-8 Finished product...

Sophisticated JAPANESE workers

In-vacuum Short Gap Undulator Microfocus Beam Lines: softer X-rays @ Photon Factory

KEK-PF BL-1A: in-vacuum short gap undulator: fundamental to cover 4.1~4.5 keV

Towards lower background by Isao Tanaka, Hokkaido University Loopless crystal mounting method

Kitago, Y., Watanabe, N. and Tanaka, I., *Acta Cryst.*, D61, 1013-1021 (2005). http://castor.sci.hokudai.ac.jp/watanabe/Xtal Mount/

Towards lower background: Promising techniques developed by other groups. OR CUT AWAY the rest with a 193 nm UV laser

Courtesy of Nikon Ltd. & Sosho Ltd. H. Adachi et al., Japanese Journal of Applied Physics Vol. 44, No. 2, 2005, pp. L54-L56 Protein

Micromanipulator system In collaboration with Dr. Tanikawa (AIST)

MICRO MANIPULATION.AVI

Crystal handling: so many different systems...

Compatibility with other systems

PF will accommodate to **Universal Pucks**

Under development within the Target Protein Research Project

Rigaku ACTOR DIAMOND, SOLEIL, SLS, APS,...

SPACE(SPring-8)

BAM(ALS)

Universal Puck

Summary

- Target Oriented Structural Proteomics of Protein Transport
- New insertion device beamline, BL-17A, has been developed at the Photon Factory 2.5 GeV ring.
- Recent progress on the stabilization of X-ray beams and the development of the extremely high precision diffractometer enable more precise data collection.
- New Target Protein Research Program: challenging protein targets (membrane proteins and complexs): two complementary micro beam BLs at SPring-8 and Photon Facotry
- New microfocus lower energy PF-BL1A will be used fo lower energy SAD phasing (and normal MAD).
- Various exchange mechanisms for cryo-pins and exchange robots

Acknowledgements

SPring-8

Masaki Yamamoto's group

Hokkaido University

Isao Tanaka

Kyoto University Kunio Miki

Osaka University

Atsushi Nakagawa Mamoru Suzuki

Nagoya University

Nobuhisa Watanabe

Financial Supports

Development of Systems and Technology for Advanced Measurement and Analysis (JST)

Protein 3000 Project (MEXT)

Grand-in-Aid for Young Scientists (B) 18770098 (MEXT)

Target Protein Research Program (MEXT)

Structural Biology Research Center, Photon Factory, KEK

	Soichi Wakatsuki Professor,	Director of Structural Biology Research Center
	Structural Biology	Beamline & Robotics
Ryuchi Kato (Associate Prof.)		Noriyuki Igarashi (Research Assoc.)
Masato Kawasaki (Research Assoc.)		BL-6A, BL-17
Kentaro Ihara (Post Doc Fellow)		Naohiro Matsugaki (Res. Assoc.)
Norio Kudo (Post Doc Fellow)		AR-NW12, BL1
Mohammad Yousef (JSPS fellow)		Masashiko Hiraki (Res. Assoc.) Robotics
Tar	nami Uejima (Researcher)	Yusuke Yamada (Research Assoc.) NE3
Tamie Aoki (Lab Technician)		Yurii Gaponov (Researcher) Programming
Honda (Lab Technician)		Kumiko Sasajima (System Engineer)
		Shokei Watanabe (Mechanical Engineer)
Ex	members:	Nobuo Honda (System Engineer)
Tadashi Satoh (Post Doc Fellow)		Kazutaka Demura (Beamline Assistant)
Leo	onard Chavas (Post Doc Fellow)	Kubota (Beamline Assistant)
+++		
		Secretaries

The Graduate University for Advanced Studies

Junichi Kouyama (D4), Simin Rahigi (D2), Ahmed Rohaim (D1), Kensuke Nakamura (M1), Ken Ohkubo (M1) Naomi Nagata* Tomoko Zeniya* Ritsuko Ebisawa* Reiko Sukegawa

Internship Students: Atsuko Tsuchiya (Kyoto Univ. M1), Ryunosuke Nakatani (Nagaoka Univ. of Tech. B4)