

General Radiography

- 2-D image from 3-D object (patient)
- Map of attenuation for each photon path
- Essentially an image of density, or structure

Organism m Organ System m Organ cm Tissue mm Cell 10µm Organelle 1µm Macromolecules 100nm Molecules 0.1nm MONASHUniversity

Hierarchy of Biolog

MONASHUniversity

Imaging Requirements

- High spatial resolution
 - Preferably sub cellular (μm)
- High temporal resolution
 - Cell kinetics, Chemokinetics (ms to μs)
- High anatomical contrast
- Specificity for tracers

Use of grids

- Grids reduce x-ray scatter
- Grids improve film contrast & resolution
- Grids increase patient dose

MONASHUniversity

Counting Statistics

Photons are quantised and hence subject to probabilities

P(n,k) =

k!

- The Poisson distribution expresses the probability of a number of events occurring in a time period
 If the supported number is a then are provided in the support of the superior of the support of the suppo
- If the expected number is n then
- The mean of P(n,k) is n
- The variance of P(n,k) is n
- The standard deviation is \sqrt{n}
- Fractional error = $(\sqrt{n})/n=1/\sqrt{n}$
- As n increases, uncertainty and noise decrease

MONASHUniversity

Entrance doses as shown

Contrast, Resolution & Noise

- Noise degrades image
 - Arises from many things No of photons, i.e. source
 - Scatter, age, processing
- Resolution
 - Specifies how sharp an image is
 - Specified as
 - As distance between features d (mm) As LPPM (line pairs per mm), d⁻¹ (mm⁻¹)
 - As MTF, in LPPM at given percentage MTF
- Contrast ability to differentiate regions

 - ♦ Grey scale regions G_A and G_B
 ♦ Contrast, C = 100*(G_A G_B)/(G_A + G_B) %
- MONASHUniversity

Radiography and **Dose**

- Transmitted X-rays deposit no dose
- Absorbed X-rays deposit dose
- Scattered X-rays also deposit dose.

MONASHUniversity

X-ray Dose

- Exposure
 - Quantity of X-rays as measured by ionisation in air is exposure
 - Kinetic Energy Released in Matter (KERMA)
 - ♦ Units are C kg⁻¹
 - Old unit is the Roentgen (R) (1R=2.58×10-4 C kg⁻¹)
- Dose
 - Energy absorbed
 - Units are J kg⁻¹ = Gy Old unit is the rad. (1 rad =0.01Gy)
- Equivalent dose
 - Not all types of radiation cause the same biological damage per unit dose
 - Unit is the Sievert Old unit is the rem (1 rem=0.01Sv)
 - Equivalent dose H(Sv)=w_R(Sv)×D(Gy)
- For X-rays w_R=1

MONASHUniversity

How Does Radiation Interact with the Body?

- When ionising radiation is absorbed in the body it can create freeradicals which may alter normal cell function
- E.g. DNA damage leading to genetic mutations
- At high doses (> 1 sievert) this can result in massive cell death, organ damage and death to the individual
- At low doses (less than 50 mSv) the situation is more complex • • Nb. DNA repair mechanisms

A dose of one millisievert

- Individual
 - A chance of 6 in 100,000 of contracting cancer Compare with normal lifetime cancer incidence of 25,000 cases per 100,000
 - A large population
 - · Will produce two cases of severe hereditary effects per million births
 - Compare with the normal incidence of severe congenital abnormalities which is 23,000
 per million births

Source Of Exposure	Exposure
Natural Radiation (Terrestrial and Airborne)	1.2 mSv per year
Natural Radiation (Cosmic radiation at sea level)	0.3 mSv per year
Total Natural Radiation	1.5 mSv per yea
	-
Seven Hour Aeroplane Flight	0.05 mSv
Seven Hour Aeroplane Flight Chest X-Ray	0.05 mSv 0.04 mSv
Seven Hour Aeroplane Flight Chest X-Ray Nuclear Fallout (From atmospheric tests in 50's & 60's)	0.05 mSv 0.04 mSv 0.02 mSv per Year
Seven Hour Aeroplane Flight Chest X-Ray Nuclear Fallout (From atmospheric tests in 50's & 60's) Chernobyl (People living in Control Zones near Chernobyl)	0.05 mSv 0.04 mSv 0.02 mSv per Year 10 mSv per year

Synchrotron

Advantages

- Monochromatic
 No beam hardening artefacts
- Parallel beam
- No cone beam artefacts
- Reduced scatter
- High Intensity

MONASHUniversity

High speed

Disadvantages

- Source cannot be rotated
 Object must be rotated which limits speed of CT
- Beam height is limited,
 - especially at high energies
 - Object may have to be scanned
 Limits size of object and/or time resolution

<section-header>

Using SR light characteristics

Coherence

- The coherence length is less than a micron on older sources but at third generation sources gets up to 100's of microns.
- This opens up potentials for several coherence imaging techniques.

Phase contrast imaging techniques

So far:

- Interferometry Phase directly
- Analyser based imaging Gradient of the phase (differential ∇φ)
- Propagation based imaging Laplacian of the phase (second order differential ∇²φ).

MONASHUniversity

MONASHUniversity

Birth:

One of the greatest Physiological challenges

- During fetal life the future airways of the lungs are liquid-filled
- At birth lungs must rapidly transform from being liquid to air filled
- How this happens is poorly understood but the process
 Develops late in pregnancy
 Is initiated by labour
- Preterm and caesarean section infants can develop problems
- Lack of clearance
 - Requires weeks of assisted ventilation (>\$2,000/day) ~30% develop chronic lung disease Incidence is increasing
- Our ability to study the problem has been greatly inhibited by the lack of a suitable imaging modality

	Interferometer	Analyser	Propagation
Requirements			
Spatial coherence	High	Reasonable	High
Temporal coherence	High	High	Low
Capabilities			
Large objects	Very difficult	Difficult	Easy
Movies	Hard	Hard	Easy
Sensitivity	Outstanding	Excellent but unidirectional	Good

Future Prospects

- Drive is to understand dynamic processes
- Alternative imaging modalities will continue to improve
 - MRI, PET, SPECT, optical, IR
 - Can be placed in lab

Synchrotron must concentrate on strengths

- Combined high spatial and temporal resolution in 'thick' objects
- We must move towards multi-modality imaging

