Small Angle X-ray Scattering (I)

Hyun Hoon Song

Dept. of Advanced Materials College of Life Science and Nano Technology Hannam University, S. Korea

Inhomogeneous Density Distribution Over Large Distance (nm scale)

$$s = 1/D \quad (or \ q = 2\pi/D) \quad (\text{\AA}^{-1})$$

$$s = 0.001 - 0.1 \text{ \AA}^{-1} \qquad D \quad (10 \sim 1000 \text{ \AA})$$

$$2\theta = 0.008 - 8, \quad \lambda = 1.542 \text{ \AA}$$

$$s = |\overline{s}| = \frac{2\sin\theta}{\lambda}$$

- Morphological information of multiphase system: Domain (Particle) Size, Distribution, Surface Area, Interface Thickness
- Density Fluctuation
- Supramolecular Ordered Structure (nanometer scale)

Fundamental Theories

- X-ray scattering from the electron density distribution in sample
- Small angle scattering for the large distance

$$f(s) = \int_{V_r} \rho(r) e^{2\pi i rs} dr$$

$$I(s) = f(s) \cdot f^*(s)$$

$$I(s) = |\Im\{\rho(x)\}|^2$$

$$\left|\bar{s}\right| = \frac{2\sin\theta}{\lambda} = \frac{1}{d} \qquad \left|\bar{q}\right| = \frac{4\pi\sin\theta}{\lambda}$$

$$I(\bar{s}) = \Im\{Q(\bar{r})\}$$
$$\bar{Q(r)} = \Im^{-1}\{I(\bar{s})\}$$

 $f(\hat{s})$: Amplitude of scattered X - ray $I(\hat{s})$: Scattered intensity $\rho(\hat{r})$: Electron density function $Q(\hat{r})$: Patterson function $(\rho(\hat{r}) * \rho(-\hat{r}))$ \Im : Fourier transform

Convolution

$$\{f * g\}(\hat{r}) \equiv \int_{-\infty}^{\infty} f(\hat{u})g(\hat{r} - \hat{u})d\hat{u}$$

$$f * g(-\hat{r}) \equiv \int_{-\infty}^{\infty} f(\hat{u})g(\hat{r} + \hat{u})d\hat{u}$$

$$\Im\{f * g\} = \Im\{f\} \cdot \Im\{g\}$$

Model of two phase system (A) and electron density distribution follow up line a-b (B).

$$I(\bar{s}) = \Im\{Q(\bar{r})\} \qquad Q(\bar{r}) = \Im^{-1}\{I(\bar{s})\}$$

 $Q(\bar{r}) = \rho(\bar{r}) * \rho(-\bar{r}) = \int \rho(\bar{a})\rho(\bar{r}+\bar{a})d\bar{a}$ $Q(\bar{r}) = \int_{0}^{\infty} (\eta(\bar{a}) + \rho_{0})(\eta(\bar{r}+\bar{a}) + \rho_{0})d\bar{a} \qquad \eta(\bar{r}) = \rho(\bar{r}) - \rho_{0}$ $= \int \eta(\bar{a})\eta(\bar{r}+\bar{a})d\bar{a} + C$ $I(\bar{s}) = \Im\{\eta(\bar{r}) * \eta(-\bar{r})\} + \Im\{C\}$ $I_{obs}(\bar{s}) = \Im\{\eta(\bar{r}) * \eta(-\bar{r})\}$

$$I_{obs}(\overline{s}) = \Im \left[Q_{\eta}(\overline{r}) \right] \Leftrightarrow Q_{\eta}(\overline{r}) = \Im^{-1} \left\{ I_{obs}(\overline{s}) \right\}$$

Derivation

 $I(\bar{s}) = \Im \left\{ \int \rho(\bar{u}) \rho(\bar{u} + \bar{r}) d\bar{u} \right\}$ $\eta(\bar{u}) = \bar{\rho(u)} - C$

$$\int \rho(\overline{u})\rho(\overline{u}+\overline{r})d\overline{u} = \int \left[\eta(\overline{u})+C\right] \left[\eta(\overline{u}+\overline{r})+C\right]d\overline{u}$$
$$= \int \eta(\overline{u})\eta(\overline{u}+\overline{r})d\overline{u}+C \int \eta(\overline{u})d\overline{u}+C \int \eta(\overline{u}+\overline{r})d\overline{u}+C^{2} \int d\overline{u}$$
$$= \int \eta(\overline{u})\eta(\overline{u}+\overline{r})d\overline{u}+C'$$

Babinet's Reciprocity Principle

Correlation Function and Patterson Function

$$\gamma(\bar{r}) = \frac{\eta(\bar{r}) * \eta(\bar{r})}{\int_0^\infty \left[\eta(\bar{r})\right]^2 d\bar{r}} = \frac{\int_0^\infty \eta(\bar{a})\eta(\bar{r}+\bar{a})d\bar{a}}{\int_0^\infty \eta(\bar{a})\eta(\bar{a})d\bar{a}} = \mathfrak{T}^{-1}\left\{I_{obs}(\bar{s})\right\} \cdot \frac{1}{\left\langle\eta^2\right\rangle V}$$

For an isotropic system
$$|\vec{s}| = s$$
, $|\vec{r}| = r$
 $\gamma(r) = \Im^{-1} \{ I_{obs}(s) \} \frac{1}{\langle \eta^2(u) \rangle V} = \frac{\int s^2 I_{obs}(s) \frac{\sin 2\pi rs}{2\pi rs} ds}{\int s^2 I_{obs}(s) ds}$

Pair Distance Distribution Function (PDDF) $P(r) = r^2 \gamma(r)$

Integration of Intensity

$$\int_0^\infty I_{obs}(\bar{s})d\bar{s} = \int_0^\infty I_{obs}(\bar{s})e^{2\pi i\bar{s}\bar{r}}d\bar{s}, \quad \bar{r} = 0$$

$$\mathfrak{I}^{-1}\left[I_{obs}\left(\bar{s}\right)\right], \quad \bar{r}=0$$

$$\langle \eta^2 \rangle V \cdot \gamma(0) = \langle \eta^2 \rangle V$$

Integration of intensity = average density difference * scattering volume

2*R*

4<u>R</u>

R

 $P(\mathbf{r}) = r^2 \gamma(\mathbf{r})$

Probability finding scattering elements separated by r

$$\eta(\bar{r}) \left(= \rho(\bar{r}) - \rho_0 \right) = \left(\rho - \rho_o \right) \sigma(\bar{r})$$

$$\sigma(\bar{r}) \begin{cases} 1 & inside \\ 0 & outside \end{cases} form factor$$

 $f(s) = \Im\{(\rho - \rho_o)\sigma(r)\} = (\rho - \rho_o)F(s)$

$$I_{obs}(\bar{s}) = \Im\{\eta(\bar{r}) * \eta(-\bar{r})\} = (\rho - \rho_0)^2 |F(\bar{s})|^2$$

For Spherical Particles

$$I_{obs}(s) = (\rho - \rho_0)^2 \frac{4}{3} \pi R^3 \left[3 \frac{\sin(2\pi Rs) - 2\pi rs \cos(2\pi Rs)}{(2\pi Rs)^2} \right]$$

Polymer Structural Physics Lab.

Particle Scattering Pattern and PDDF

Particle Scattering

 $S(q) \approx 1$ for dilute solution

Form Structure Factor Factor

 $S(q) \approx 1$ for dilute solution

PS(12k)-b-PVP(11.8k) solutions in toluene

PDDF of PS(12K)-*b*-P4VP(11.8K), with different concentration levels up to 16 wt %.

$$I_{obs}(s) = N \langle \eta^2 \rangle V^2 e^{-\frac{4}{3}\pi^2 R_g^2 s^2}$$

$$lnI_{obs}(s) = lnNV^{2} \langle \eta^{2} \rangle - \frac{4}{3} \pi^{2} R_{g}^{2} s^{2}$$

R_g : radius of gyration *V* : scattering volume

 R_g from the slope $I(0) = NV^2 \langle \eta \rangle^2$

Applicable only at very small anglesMust be sufficiently dilute

For spherical particle

$$I_{obs}(s) = \frac{\rho - \rho_0}{8\pi^3} \left[\frac{4\pi R^2}{s^4} + \frac{1}{\pi s^6} + \frac{4R}{s^5} \sin 4\pi Rs + \left(\frac{4\pi a^2}{s^4} - \frac{1}{\pi s^6} \right) \cos 4\pi Rs \right]$$

when s is large

$$I_{obs}(s) = \frac{\rho - \rho_0}{8\pi^3} \frac{A}{s^4}$$

A is surface area of the particle

Satisfies regardless of particle shape, size and concentration Surface area A can be obtained from the plot of $s^4 I_{obs}(s) vs. s$

This is also used for intensity fit at high angles

Condensed Multi-phase

 ρ_1, ρ_2 : densities of particle and matrix ϕ_1, ϕ_2 : volume fractions $\rho_0 = \rho_1 \phi_1 + \rho_2 \phi_2$ average density $\eta(r) = \rho(r) - \rho_o$ $\langle \eta^2 \rangle = \Delta \rho^2 \phi_1 \phi_2 \qquad \Delta \rho = \rho_1 - \rho_2$ $\vec{I}_{obs}(\vec{s}) = \langle \eta^2 \rangle V \Im \{ \gamma(\vec{r}) \} = \Delta \rho^2 \phi_2 \phi_1 V \cdot \Im \{ \gamma(\vec{r}) \}$ $I_{obs}(s) = 2\pi (\Delta \rho)^2 \phi_1 \phi_2 V \cdot \Im \{\gamma(r)\}$ J (₹) Invariant

$$I_{obs}(s)ds^{\rho} = \int I_{obs}(s)e^{i2\pi sr}ds^{\rho}(r=0)$$

$$\underbrace{(\Delta \rho)^2 \phi_1 \phi_2 V \gamma(\vec{r})}_{(\Delta \rho)^2 \phi_1 \phi_2 V} \quad \beta = 0$$

Surface Area

$$\gamma'(0) = -\frac{l}{4\phi_1\phi_2}\frac{A}{V}$$

Interface Thickness

Polymer Crystals (lamellae)

$$I_{1obs}(s) = 4\pi s^2 I_{obs}(s)$$

Correlation Function

Correlation and Interface Distribution Functions Analysis on Lamellar Structure

Examples of various arbitrary model

$$Z''(r) = \frac{2}{r_e^2 (2\pi)^2} \int_0^\infty \left[\lim_{q \to \infty} q^4 I(q) - q^4 I(q) \right] \cos qr dq$$

Ideal Two Phase Model

$$I_{ideal} = \Im(\rho_{ideal} * \rho_{ideal})$$

 I_c =100Å, I_a =30Å, finite no. of lamellae in the stack is 20

Model With Interface (I)

The ideal two phase model with a finite crystal amorphous transition zone

*I*_c=100Å, *I*_a=30Å, *I_i*=12Å

Distribution of lamellar and amorphous layer sizes

$$L_{model} = L_c^M \ge L_c^m \quad for \ w_2 \le w_1$$
$$L_{model} = L_c^M \le L_c^m \quad for \ w_2 \ge w_1$$

2 ; thicker phase w; width of the thickness distribution L_{model}; average long spacing in the model

Stack 1
$$I_c=90$$
Å, $w_c=10$ Å, $I_a=25$ Å, $w_a=10$ Å, $I_i=15$ Å, $w_i=1$ Å
Stack 2 $I_c=60$ Å, $w_c=10$ Å, $I_a=25$ Å, $w_a=10$ Å, $I_i=15$ Å, $w_i=1$ Å

Examples

Correlation function

Interface distribution function

Nanostructures

Lamella

Hexagonal cylinder

Mathematical treatment of X-ray scattering

 $I(s) = \left| \Im \{ \rho(x) \} \right|^2$

$$s = \frac{2\pi\sin\theta}{\lambda} = \frac{1}{d}$$

$$\rho(x) = \rho_A(x) * Z(x)$$

$$\Im\{\rho(x)\} = \Im\{\rho_A(x) * Z(x)\}$$

$$= \Im\{\rho_A(x)\} \cdot \Im\{Z(x)\}$$

$$= F(S) \cdot Z(S)$$

Sphere cubic packing

h	k	1	s ²	S	order	d
1	0	0	2.78E-04	0.016667	1	60.00
1	1	0	5.56E-04	0.02357	√2	42.43
1	1	1	8.33E-04	0.028868	√3	34.64
2	0	0	0.00111	0.033333	√4	30.00
2	1	0	0.00139	0.037268	√5	26.83
2	1	1	0.00167	0.040825	√6	24.49
2	2	0	0.00222	0.04714	√8	21.21
2	2	1	0.0025	0.05	√9	20.00
2	2	2	0.00333	0.057735	√12	17.32
3	0	0	0.0025	0.05	√9	20.00
3	1	0	0.00278	0.052705	√10	18.97
3	1	1	0.00306	0.055277	√11	18.09
3	2	0	0.00361	0.060093	√13	16.64
3	2	1	0.00389	0.062361	√14	16.04

$$\frac{1}{d^2} = \frac{h^2 + k^2 + l^2}{a^2}$$

Columnar hexagonal packing

h	k	I	s ²	S	order	d
1	0	0	0.00037	0.019245	1	51.96
1	1	0	0.001111	0.033333	√3	30.00
2	0	0	0.001481	0.03849	√4	25.98
2	1	0	0.002593	0.050918	√7	19.64
2	2	0	0.004444	0.066667	√12	15.00
3	0	0	0.003333	0.057735	√9	17.32
3	1	0	0.004815	0.069389	√13	14.41
3	2	0	0.007037	0.083887	√19	11.92
3	3	0	0.01	0.1	√27	10.00
4	0	0	0.005926	0.07698	√16	12.99
4	1	0	0.007778	0.088192	√21	11.34
4	2	0	0.01037	0.101835	√28	9.82
4	3	0	0.013704	0.117063	√37	8.54
4	4	0	0.017778	0.133333	√48	7.50

$$\frac{1}{d^2} = \frac{4}{3} \left(\frac{h^2 + hk + k^2}{a^2} \right) + \frac{l^2}{c^2}$$

Columnar quadratic packing

h	k	I	s ²	S	order	d
1	0	0	0.000278	0.016667	1	60.00
1	1	0	0.000556	0.02357	√2	42.43
2	0	0	0.001111	0.033333	√4	30.00
2	1	0	0.001389	0.037268	√5	26.83
2	2	0	0.002222	0.04714	√8	21.21
3	0	0	0.0025	0.05	√9	20.00
3	1	0	0.002778	0.052705	√10	18.97
3	2	0	0.003611	0.060093	√13	16.64
3	3	0	0.005	0.070711	√18	14.14
4	0	0	0.004444	0.066667	√16	15.00
4	1	0	0.004722	0.068718	√17	14.55
4	2	0	0.005556	0.074536	√20	13.42
4	3	0	0.006944	0.083333	√25	12.00
4	4	0	0.008889	0.094281	√32	10.61

$$\frac{1}{d^2} = \frac{h^2 + k^2 + l^2}{a^2}$$

Oriented Lamellar Patterns

$$\rho(x) = \rho_A(x) * Z(x)$$

$$\Im\{\rho(x)\} = \Im\{\rho_A(x) * Z(x)\}$$

$$= \Im\{\rho_A(x)\} \Im\{Z(x)\}$$

$$= F(S) Z(S)$$

$$I_{obs}(s) = \left(F^2(s) \cdot Z^2(s)\right)$$

$$F^2(s)$$

$$I_{D}$$

$$F^2(s)$$

Polymer Structural Physics Lab.

sD

Lab.

Density Fluctuation

$$Fl(V) = \frac{\left\langle (N - \langle N \rangle)^2 \right\rangle}{\langle N \rangle}$$
$$Fl(V) = \int_{Vr} \frac{1}{\rho_0} I(s) \frac{1}{V} (\Sigma^2(s)) ds$$
$$Ruland (1975)$$

$$Fl(\infty) = \frac{1}{\rho_0} I(0)$$

 $Fl(\infty) = \rho \kappa T \beta_T$

Optimization of Collection Time (Error Analysis)

Figure 6-12 Randomly spaced voltage pulses produced by a detector.

Poisson distribution

 $P(N) = \frac{(nt)^{N} e^{-nt}}{N!}$ nt: average value P(N) ; probability of having N count in a given time t

Relative error possessed in the count N

number of pulses counted	standard deviation (%)	collection time (sec)
1,000	3.2	1
10,000	1.0	10
100,000	0.3	100

t, µ: Thickness, Linear Absorption Coefficient

$$I_{obs}(s) \sim t \cdot e^{-\mu t}$$

$$t_{opt} = \frac{1}{\mu}$$