VUV & SX Optics

Kenta Amemiya

Photon Factory, High Energy Accelerator Research Organization

Outline

1. Mirrors 1.1. focusing & collimation 1.2. substrate materials 1.3. coating & reflectivity 2. Diffraction Gratings 2.1. principle - wavelength dispersion -2.2. energy resolution - dispersion and focus -2.3. fabrication of gratings

1.1. focusing & collimation

Collimation

Parabolic mirror \Rightarrow perfect collimation (spot-size limited) Use of a cylindrical or spherical mirror \Rightarrow poor collimation (aberration) Larger divergence (larger illumination area) \Rightarrow larger aberration

 $r' \equiv \infty$

Combination of collimating mirrors

r = 10 m

1.2. substrate materials

Needs:

Easy to fabricate: precise control of the mirror shape Low defects, pores Hardness: small distortion High thermal conductivity: cooling efficiency Low thermal expansion: against a heat load

Typical materials

Si: for high heat load, with cooling

SiO₂: without cooling

* SiO₂ is suitable for mirror current measurements

http://henke.lbl.gov/optical_constants/

Photon Energy (eV)

Photon Energy (eV)

http://henke.lbl.gov/optical_constants/

Higher order suppression

http://henke.lbl.gov/optical_constants/

Higher order suppression: incidence angle dependence

http://henke.lbl.gov/optical_constants/

Simultaneous rotation with energy scan is necessary No precise control is required

Higher order suppression in low energy region

http://henke.lbl.gov/optical_constants/

It is difficult to achieve high reduction ratio keeping high reflectivity for fundamental light Not effective below ~100 eV

Multilayer mirror

 $[W/C]_{80}$, d = 3 nm, 75 deg

2.1. principle - wavelength dispersion -

Diffraction grating: Periodic grooves on a substrate

Principle: Interference between the rays reflected at different grooves

Enhanced when light path difference = $m\lambda$

 $\sin \alpha + \sin \beta = nm\lambda$ n: groove density* $\alpha \neq |\beta|$ m: diffraction order(if $\alpha = |\beta|$, any λ satisfies the above condition at m = 0) \Rightarrow zero-th order light β depends on $\lambda \Rightarrow$ Wavelength dispersion

10 nm t

(conversion of wavelength to angle)

How can we monochromatize by using a diffraction grating? Most basic mode: collimated-light illumination

sed $\sin \alpha + \sin \beta = nm\lambda$ Problem 1: SR is not a collimated light ! Problem 2: Superposition of diffracted lights \Rightarrow difficult to be resolved

Solution 1: Collimation of diverging light with a parabolic mirror Solution 2: Focusing of diffracted lights with another parabolic mirror

Focused diffracted lights are well resolved in wavelength at the exit slit !

Dispersion and Focus

The simplest monochromator

Both the "dispersion" and "focus" are achieved by a diffraction grating only.

Is that really possible?

It is impossible to obtain a perfect focus at all wavelength

But, "perfect focus" is not necessary !

Small number of optical elements

2.2. energy resolution - dispersion and focus -(a) Source size & Demagnification (a) Source size & Demagnification Low demagnification $\searrow S'$ ✓ Source High demagnification Slit α Grating *d*: divergence at the source s' (lower limit) = s d/d'd': divergence at the focus How to reduce s': α 1. reduce r' compared to r long entrance arm & short exit arm $\sim l \cos\beta$ $\sim l \cos \alpha$ $d' \sim l \cos\beta r$ $d \sim l \cos \alpha l r$ 2. decrease $|\beta|$ compared to α make the incidence angle more grazing ⇒ High groove density (keeping the diffraction condition satisfied) large included angle (α - β)

3. reduce the source size (*s*)

Must we reduce the size of the SR source itself?

Use of "pre-focusing optics" and "entrance slit"

 "entrance slit" can be regarded as a virtual source
 Source size can be controlled by entrance-slit opening (at the sacrifice of intensity)
 Demagnification in the pre-focusing optics is effective (* divergence increases)

(b) Aberration

Caused by a deviation from the elliptical (or parabolic) shape e.g. Use of a spherical mirror instead of elliptical one Diffraction effects should be taken into account for a diffraction grating Aberration is usually expanded in a power series of the position on the optical element, (*w*, *I*), using the light path function, *F*

$$F = p_{A} + q_{A} + r_{B} + M_{10}w + (M_{20}w^{2} + M_{02}l^{2} + M_{30}w^{3} + M_{12}wl^{2})/2 + (M_{40}w^{4} + M_{22}w^{2}l^{2} + M_{04}l^{4})/8 + \dots + (n_{10}w) + (n_{20}w^{2})/2 + (n_{30}w^{3})/2 + (n_{40}w^{4})/8 + \dots] m\lambda, \quad \leftarrow \text{For grating}$$
Ction condition
$$M_{10} \neq -\sin\alpha - \sin\beta, \\M_{20} = (\cos^{2}\alpha)/r_{A} + (\cos^{2}\beta)/r_{B}, \\M_{20} = (\sin\alpha\cos^{2}\alpha)/r_{A}^{2} + (\sin\beta\cos^{2}\beta)/r_{B}^{2}$$

Defocus (deviation from focal condition) "coma" aberration

Diffrac

(meridional focusing), Larger illumination area (larger w and l) \Rightarrow larger effects of aberration

(sagittal focusing) or

 $M_{30} = (\sin \alpha \cos^2 \alpha) / r_A^2 + (\sin \beta \cos^2 \beta) / r_B^2 - [2(A_{10})_A^2 K_A] / R_A$

How to reduce the aberration:

Defocus can be compensated by adjusting the exit-slit position Higher-order aberrations can be canceled by a combination of mirrors (not easy) Reduce the illumination area \Rightarrow small divergence (acceptance)

Examples for aberration-free or low-aberration optics

(c) Slope errors

Errors in fabrication of optical elements (e.g. undulation of a plane mirror)

Not systematic \Rightarrow compensation is impossible

 \Rightarrow One have to fabricate optical elements with small slope error

or design optics to reduce the effects of the slope errors

Demagnification is also effective to reduce the slope-error effects

(d) Number of illuminated grooves

Intrinsic problem of diffraction

Resolving power $(\lambda/\Delta\lambda) \sim N$

* Small divergence

 \Rightarrow small effects of aberration but small number of grooves

2.3. fabrication of gratings

Substrate (Plane, Cylindrical, Spherical, Toroidal,...)
 Same as mirror fabrication

2. Fabrication of grooves (uniform or varied line spacing) $N = N_0 (1 + a_1 w + a_2 w^2 + a_3 w^3)$ (groove density)

$$F = p_A + q_A + r_B$$

+ $M_{10}w + (M_{20}w^2 + M_{02}l^2 + M_{30}w^3 + M_{12}wl^2)/2$
+ $(M_{40}w^4 + M_{22}w^2l^2 + M_{04}l^4)/8 + \dots$
+ $(n_{10}w) + (n_{20}w^2)/2 + (n_{30}w^3)/2 + (n_{40}w^4)/8 + \dots] m\lambda$
= 0 for uniform line spacing

(a) Mechanical ruling

All groove parameters $(a_1, a_2,...)$ can be controlled ! Relatively rough surface \Rightarrow causes stray light Suitable for "Brazed" gratings

2.3. fabrication of gratings

(b) Holographic recording

Interference patterns of Laser lights Some groove parameters might not be controlled * aspheric wavefront recording is available Relatively smooth surface ⇒ high reflectivity & low stray light Both the "Laminar" and "Brazed" gratings can be fabricated * some manufacturer strongly prefers the Laminar type

Collimated lights ⇒ uniform line spacing

Spherical wavefronts ⇒ varied line spacing (poor control) Aspheric wavefronts ⇒ varied line spacing (fine control) T.Namikoka and M.Koike Appl. Opt. 34 (1995) 2180

2.3. fabrication of gratings

3. Groove shape (Laminar & Brazed)

(a) Laminar type

Medium diffraction efficiency Higher order suppression interference between top and bottom parts

(b) Brazed type

High diffraction efficiency when "on Braze" Strong higher orders